Structural, Optical and Electrical Characteristics of Polycrystalline ZnO Thin Film Prepared by Sol-Gel Spin-Coating Method

Article Preview

Abstract:

The effect of annealing temperatures on the Zinc Oxide (ZnO) thin films properties has been investigated. 1.0 M ZnO solution was prepared by sol-gel method as coating solution for ZnO thin films deposition process. The thin films deposition was conducted by spin-coating technique on the silicon and glass substrates. The scanning electron microscopy (SEM) images reveal the evolution of ZnO surface morphology with annealing temperatures. The crystallinity improvement occurred at higher annealing temperature as shown by x-ray diffraction (XRD) result. The optical properties found to be varied at different annealing temperatures. The current-voltage (I-V) measurement results suggested the improvement of ZnO thin film electrical properties with annealing temperatures.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

24-29

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V.A. Karpina, V.I. Lazorenko, C.V. Lashkarev, V.D. Dobrowolski, L.I. Kopylova, V. A. Baturin, S.A. Pustovoytov, A. Ju. Karpenko, S.A. Eremin, P.M. Lytvyn, V.P. Ovsyannikov, E.A. Mazurenko, Cryst. Res. Technol. 39(11) (2004) 980.

DOI: 10.1002/crat.200310283

Google Scholar

[2] Dong Chan Kim, Won Suk Han, Bo Hyun Kong, Hyung Koun Cho, Chang Hee Hong, Physica B 401–402 (2007) 386.

Google Scholar

[3] Ting-Jen Hsueh, Cheng-Liang Hsu, Shoou-Jinn Chang, Pei-Wen Guo, Jang-Hsing Hsieh, I-Cherng Chen, Scripta Materialia 57 (2007) 53.

DOI: 10.1109/tnano.2008.2005917

Google Scholar

[4] J.B.K. Law, J.T.L. Thong, Nanotechnology 19 (2008) 205502.

Google Scholar

[5] Seong Jun Kang, Journal of the Korean Physical Society 47 (2005) S589.

Google Scholar

[6] K. Ogata, K. Sakurai, Sz. Fujita, Sg. Fujita, K. Matsushige, Journal of Crystal Growth 214/215 (2000) 312-314.

DOI: 10.1016/s0022-0248(00)00099-3

Google Scholar

[7] Takashi Hirate, Shinya Sasaki, Weichi Li, Hiroshi Miyashita, Takashi Kimpara, Tomomasa Satoh, Thin Solid Films 487 (2005) 35.

DOI: 10.1016/j.tsf.2005.01.031

Google Scholar

[8] V. Tvarozek, K. Shtereva, I. Novotny, J. Kovac, P. Sutta, R. Srnanek, A. Vincze, Vacuum 82 (2008) 166.

DOI: 10.1016/j.vacuum.2007.07.056

Google Scholar

[9] M. Chen, X. Wang, Y.H. Yu, Z.L. Pei, X.D. Bai, C. Sun, R.F. Huang, L.S. Wen, Applied Surface Science 158 (2000) 135.

Google Scholar

[10] Sang Woo Whangbo, Hong Kyu Jang, Sang Gon Kim, Man Ho Cho, Kwangho Jeong, Chung Nam Whang, Journal of the Korean Physical Society 37 (4) (2000) 456.

Google Scholar

[11] J. Mass, P. Bhattacharya, R.S. Katiyar, Materials Science and Engineering B 103 (2003) 9.

Google Scholar

[12] Shane O'Brien, L.H.K. Koh, Gabriel M. Crean Thin Solid Films 516 (2008) 1391.

Google Scholar

[13] Hongxia Li, Jiyang Wang, Hong Liu, Changhong Yang, Hongyan Xu, Xia Li, Hongmei Cui, Vacuum 77 (2004) 57.

Google Scholar

[14] Shou-Yi Kuo, Wei-Chun Chen, Fang-I Lai, Chin-Pao Cheng, Hao-Chung Kuo, Shing-Chung Wang, Wen-Feng Hsieh, Journal of Crystal Growth 287 (2006) 81.

DOI: 10.1109/cleopr.2005.1569598

Google Scholar

[15] Klug HP, Alexaander LE, X-ray Diffraction Procedure for Crystalline and Amorphous Materials, Wiley, (1974) 662.

Google Scholar