First Principle Study of the Optical Properties of Transition Metal Nitrides XN (X=Ti, Zr, Hf)

Article Preview

Abstract:

The optical properties of face-centered cubic IVB group transition metal nitrides such as TiN, ZrN, and HfN were calculated using the plane wave pseudopotential method based on first-principle density function theory. The results of band structures show that conduction bands are mainly formed by the metal atom d-state, whereas valence bands are mainly formed by the N 2p-state. In optical properties research, the computed results of complex dielectric functions, absorptions, reflectivities, conductivities and loss functions of the three materials are analysed in terms of band structures. The results agree with experiment data. Analysis results show that the optical properties of these materials in low-energy regions are metallic because of the free electrons intraband-transition, and the transit to semiconducting properties in high-energy area is caused by valence electrons interband-transition. The sharp peaks of the transmissivity spectra indicate excellent optical selectivity in the visible light area. Moreover, lowering the starting energies of interband-transitions as a possible method to improve optical selectivities is discussed

You might also be interested in these eBooks

Info:

Periodical:

Pages:

710-714

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Kobayashi, Surface Science Vol. 493 (2001), p.665.

Google Scholar

[2] C. Sarioglu, Surface and Coatings Technology Vol. 201 (2006), p.707.

Google Scholar

[3] E. Valkonen, C. G. Ribbing, J. E. Sundgren, Appl. Opt. Vol. 25 (1986), p.3624.

Google Scholar

[4] B. Karlsson, R. P. Shimshock, B. O. Seraphin, Phys. Scr. Vol. 25 (1982), p.775.

Google Scholar

[5] S. M. Edlou, J. C. Simons, G. A. Al-Jumaily, N. A. Raouf, in: Characterization of Optical Thin Films I, edited by J. D. Rancourt, volume 2262 of Optical Thin Films IV: New Developments, SPIE Publishers (1994).

DOI: 10.1117/12.185781

Google Scholar

[6] B. O. Seraphin: Optical Properties of Solids-New Development (North-Holland, Amsterdam 1976).

Google Scholar

[7] G. L. Harding, J. Vac. Sci. Technol. Vol. 13 (1976), p.1070.

Google Scholar

[8] P. Hohenberg, W. Kohn, Phys. Rev. B Vol. 36 (1964), p.864.

Google Scholar

[9] M. D. Segall, P. L. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, M. C. Payne, J. Phys. : Condens. Matter Vol. 14 (2002), p.2717.

DOI: 10.1088/0953-8984/14/11/301

Google Scholar

[10] D. M. Ceperley, B. J. Alder, J. Phys. Rev. Lett. Vol. 45 (1980), p.566.

Google Scholar

[11] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. Vol. 77 (1996), p.3865.

Google Scholar

[12] D. Vanderbilt, Phys. Rev. B Vol. 41 (1990), p.7892.

Google Scholar

[13] H. J. Monkhorst, J. D. Pack, Phys. Rev. B Vol. 13 (1976), p.5188.

Google Scholar

[14] M. Hasegawa, T. Yagi, J. Alloys Compd. Vol. 403 (2005), p.131.

Google Scholar

[15] A. N. Christensen, Acta. Chem. Scand. A Vol. 29 (1975), p.563.

Google Scholar

[16] Y. G. Zainulin, S. I. Alyamovskii, G. P. Shveikin, P. V. Gel'd, Teplofiz. Vys. Temp. Vol. 9 (1971), p.496.

Google Scholar

[17] M. Y. Duan, M. Xu, H. P. Zhou, Y. B Shen, Q. Y. Chen, Y. C. Ding, W. J. Zhu, Acta Phys. Sin. Vol. 56 (2007), p.5359.

Google Scholar

[18] Y. C. Su, L. H. Xiao, Y. C. Fu, P. F. Zhang, P. Peng, SCIENTIA SINICA Phys, Mech & Astron. Vol. 41 (2011), p.58.

Google Scholar