Electron Paramagnetic Resonance Study and Magnetic Property of Ni-Doped Titanate Nanorods

Article Preview

Abstract:

Ni-doped titanate nanorods were synthesized from anatase TiO2 powder and Ni nitrate using a one-step hydrothermal reaction in alkaline solution. The nanorods are straight with lengths a few micrometer and diameters between 80 and 120 nm. The Ni-doped nanorods have the similar structure as hydrogen titanate nanorods of monoclinic structure. Magnetic measurement revealed that Ni-doped titanate nanorods are ferromagnetism at 300K. Electron paramagnetic resonance were studied and the spectra showed that a broad asymmetric signal and a signal in low field appeared due to the Ni ions incorporated into the titanate lattice. The results suggest that Ni-dopants play an important role in the ferromagnetism. The ferromagnetic response could be attributed to Ni intercalated into the titanate lattice.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

723-728

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S. Koshihara, H. Koinuma, Science, 291, (2001), 854.

DOI: 10.1126/science.1056186

Google Scholar

[2] Nguyen Hoa Hong, Joe Sakai, W. Prellier, Awatef Hassini, Antoine Ruyter, and François Gervais, Phys. Rev. B. 70, (2004) 195204.

Google Scholar

[3] (a) S.R. Shinde, S.B. Ogale, S.D. Sarma, J.R. Simpson, H.D. Drew S.E. Lo. and, C. Lanci, J.P. Buban, N.D. Browning, V.N. Kulkarni, J. Higgins, R.P. Sharma, R.L. Greene, T. Venkatesan, Phys. Rev. B, 67 (2003).

Google Scholar

[4] C. B. Fitzgerald, a) M. Venkatesan, A. P. Douvalis, S. Huber, and J. M. D. Coey,T. Bakas, J. Appl. Phys, 95, (2004), 7390.

Google Scholar

[5] Ohno, H. Science 281, (1998), 951.

Google Scholar

[6] C. Huang, X. Liu, L. Kong, W. Lan, Q. Su, and Y. Wang, Appl. Phys. A: Mater. Sci. Process. 87, (2007), 781.

Google Scholar

[7] C. M. Huang, X. Q. Liu, Y. P. Liu, and Y. Y. Wang, Chem. Phys. Lett. 432, (2006), 468.

Google Scholar

[8] P.J. Shannon, W.M. Gibbons, S.T. Sun, Nature, 1994, 368, 532.

Google Scholar

[9] Hao Wang, Y. Chen, H. B. Wang, C. Zhang, F. J. Yang, J. X. Duan, and C. P. Yang,Y. M. Xu, M. J. Zhou, and Q. Li , Appl. Phys. Lett. 90, (2007)052505.

Google Scholar

[10] Dana A. Schwartz, Nick S. Norberg, Quyen P. Nguyen, Jason M. Parker, and Daniel R. Gamelin, J. Am. Chem. Soc, 125, (2005), 13205-13218.

Google Scholar

[11] Sug Woo Jung, Won Il Park, Gyu-chul Yi and Miyoung Kim Adv. Matt. 15, (2003), 1358.

Google Scholar

[12] Paul I. Archer, Pavle V. Radovanovic, Steve M. Heald, and Daniel R. amelin , J. Am. Chem. Soc, 127, (2005), 17479-17487.

Google Scholar

[13] (a) P.J. Shannon, W.M. Gibbons, S.T. Sun, Nature, 368, (1994), 532. (b) M. Schadt, H. Seiberle, A. Schuter, Nature, 381, (1996), 212.

Google Scholar

[14] X.W. Wang X.P. Gao G.R. Li,L. Gao T.Y. Yan, and.H.Y. Zhu, 2007, Appl. Phys. Lett. 91, 143102.

Google Scholar

[15] Lan, Y, Gao, X. P, Zhu, H. Y, Zheng, Z. F, Wu, F, Ringer, S. P, Song, D. Y. Adv. Funct. Mater. 15, (2005), 1310.

Google Scholar

[16] X.W. Wang, X.P. Gao, G.R. Li, T.Y. Yan, and.H.Y. Zhu, J. Phys. chem.C. 112, (2008) 5384-5389.

Google Scholar

[17] D. Wu, Y. F. Chen, J. Liu, X. N. Zhao, A. D. Li, and N. B. Ming, Appl. Phys. Lett. 87, (2005)112501.

Google Scholar

[18] Mónica Martos, Beatriz Julián, Hakim Dehouli, Didier Gourier, Eloisa Cordoncillo, PurificaciÓn Escribano,J. Sloid State Chem. 180 (2007) 679–687.

DOI: 10.1016/j.jssc.2006.11.026

Google Scholar

[19] K.S. Rane, R. Mhalsiker, S. Yin, T. Sato, Kuk Cho, E. Dunbar, Pratim Biswas,J. Solid State Chem. 179 (2006) 3033–3044.

DOI: 10.1016/j.jssc.2006.05.033

Google Scholar

[20] T.K. Ghorai, D. Dhak, S. Dalai, P. Pramanik ,J. Alloys Compounds 463 (2008) 390–397.

Google Scholar