[1]
S. Ohnuma, N. Kobayashi, T. Masumoto, S. Mitani and H. Fujimori. Magnetostriction and soft magnetic properties of (CoFe)-Al-O granular films with high electrical resistivity. Journal of applied physics, (1999), 85: 4574.
DOI: 10.1063/1.370412
Google Scholar
[2]
J. W. Lee, Y. K. Hong, K. Kim, J. Joo, Y. W. Yoon, et al. RF and Microwave Noise Suppression In a Transmission Line Using Fe-Si-Al/Ni-Zn Magnetic Composite Films. Journal of the Korean Physical Society, 2006, 48: 1534-1538.
Google Scholar
[3]
J. S. Liao, Z. K. Feng, J. Qiu, Y.Q. Tong. High‐frequency permeability of sputtered Fe-Co-B-based soft magnetic thin films. physica status solidi (a), (2008), 205(12): 2943-2947.
DOI: 10.1002/pssa.200824316
Google Scholar
[4]
S. X. Wang, N. X. Sun, M. Yamaguchi, S. Yabukami. Sandwich films: Properties of a new soft magnetic material. Nature, (2000), 407(6801): 150-151.
DOI: 10.1038/35025142
Google Scholar
[5]
Ki Hyeon Kim, Shigehiro Ohnuma, and Masahiro Yamaguchi. RF Integrated Noise Suppressor Using Soft Magnetic Films. IEEE Trans Magn, (2004), 40(4): 2838.
DOI: 10.1109/tmag.2004.830474
Google Scholar
[6]
Kaori Maruta, Masaya Sugawara, Yutaka Shimada, and Masahiro Yamaguchi. Analysis of Optimum Sheet Resistance for Integrated Electromagnetic Noise Suppressors. IEEE Trans On Magn, (2006), 42(10): 3377.
DOI: 10.1109/tmag.2006.879443
Google Scholar
[7]
Shigehiro Ohnuma, Tadayoshi Iwasa, Hiroyasu Fujimori, and Tsuyoshi Masumoto. Noise Suppression Effect of Soft Magnetic Co–Pd–B–O Films With Large and Bs. IEEE Trans On Magn, (2006), 42(10): 2769.
DOI: 10.1109/tmag.2006.880381
Google Scholar
[8]
S. Wang, X. D. Zhang, J. G. Li, J. Ma, J.J. Huang. Enhanced magnetic softness and high-frequency characteristics of Fe51. 1Co48. 9B-Al2O3 nanogranular films. Scripta Materialia, (2011), 65(1): 45–48.
DOI: 10.1016/j.scriptamat.2011.03.010
Google Scholar
[9]
B. M. Zhang , G. W. Wang , F. Zhang , Y.H. Xiao, S.H. Ge. High-frequency FeCoNiNbB–SiO2 nano-granular films with high resistivity and adjustable resonance frequency from 1. 3 to 7. 8 GHz. Applied Physics A: Materials Science & Processing, (2009).
DOI: 10.1007/s00339-009-5278-z
Google Scholar
[10]
X. F. Bi, J. P. Cui. Temperature dependence of structural and transport propertyof Cu-free FeCoZrB magnetic films. Thin Solid Films, (2008), 516: 2321– 2324.
DOI: 10.1016/j.tsf.2007.08.126
Google Scholar
[11]
C. C. Hsieh, T. H. Lin1, H. W. Chang, C. W. Chang, W. C. Chang, and C. C. Yang. Effect of Dopants on the Soft Magnetic Properties and High Frequency Characteristics of FeCoBM (M = Ti, Nb, Hf, and Ta) Thin Films. Journal of Nanoscience and Nanotechnology, (2011).
DOI: 10.1166/jnn.2011.2726
Google Scholar
[12]
G. W. Qin, B. Yang, N. Xiao, Y.P. Ren, M. Jiang, X. Zhao, K. Oikawa. Origin on amorphization of Co–Mo magnetic thin films: Experiments and thermodynamic calculation. Thin Solid Films, (2009), 517: 2984-2987.
DOI: 10.1016/j.tsf.2009.01.003
Google Scholar
[13]
Xiong Xuan, Feng ZeKun, Wang Xian, Chen ZhongYan. Effect of Dopants on the Microwave Magnetic Characteristics of FeCoBM-Al2O3 Soft MagneticThin Films. 2012 Spring Congress on Engineering and Technology. (accepted).
Google Scholar
[14]
Xuan Xiong, Zekun Feng, Wenyi Ren, Huan Lin, Shuoqing Yan. Soft magnetic and microwave characteristics of amorphous FeCoBNi–Al2O3 films deposited by RF magnetron co-sputtering. Journal of Alloys and Compounds, (2012), 514: 170-173.
DOI: 10.1016/j.jallcom.2011.11.047
Google Scholar