Compatibility and Crystallinity of Electrospun Aligned PHBV/PEG Ultrafine Fibers Scaffolds

Article Preview

Abstract:

Aligned PHBV/PEG ultrafine fibers are fabricated for potential applications in tissue repair. In this paper we find that the optimum spinning parameters to prepare aligned PHBV/PEG fibers is as follows: the concentration of 8wt%, voltage at 10kv, receiving distance at 18cm, the boost speed at 0.8ml/h and the best linear velocity of the rotating drum at 9.5m/s. The content of PEG is less than 50%. In addition, we investigate the interaction between PHBV and PEG in its entirety; we also discuss the surface morphology of the blends, compatibility, thermal decomposition and crystallization behavior by the help of different test methods.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

85-90

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. Galego, C. Rozsa, R. Schez, J. Fung and J. Santo Tom: Polym Test Vol. 19 (2009), p.485.

Google Scholar

[2] L. S. Nair and C. T. Laurencin: Prog Polym Sci. Vol. 32 (2007), p.762.

Google Scholar

[3] S. Luo and A. N. Netravali: Polym Degrad Stabil. Vol. 80 (2003), p.59.

Google Scholar

[4] P. Mohanna, G. Terenghi and M. Wiberg: J Plast Recons. Vol. 39 (2005), p.129.

Google Scholar

[5] RC. Young, M. Wiberg and G. Terenghi: Br J Plast Surg. Vol. 55 (2002), p.235.

Google Scholar

[6] L. Ghasemi-Mobarakeh, M. Morshed, and M. Nasr-Esfahani: Biomaterials Vol. 29 (2008), p.4532.

Google Scholar

[7] W. Huang, X. Shi, L. Ren, C. Du and Y. Wang: Biomaterials Vol. 31 (2010), p.4278.

Google Scholar

[8] B. Fei, C. Chen, H. Wu, S. Peng, X. Wang, L. Dong and J. Xin: Polymer Vol. 45 (2004), p.6275.

Google Scholar

[9] S. Luo and A. N. Netravali: Polym Degrad Stabil. Vol. 80 (2003), p.59.

Google Scholar

[10] N. Carrasquero and D. Riahi: Journal of Applied Mathematics and Statistics Vol. 16 (2010), p.1.

Google Scholar

[11] M. M. Feldstein, A. Roos, C. Creton and E. E. Dormidontova: Polymer Vol. 44 (2003), p.1819.

Google Scholar

[12] S. C. Park, Y. Liang, H. S. Lee and Y. H. Kim: Polymer Vol. 45 (2004), p.8981.

Google Scholar

[13] R. S. Lehrle and R. J. Williams: Macromolecules Vol. 27 (1994), p.3782.

Google Scholar

[14] M. Kunioka and Y. Doi: Macromolecules Vol. 23 (1990), p. (1933).

Google Scholar

[15] T. Furukawa, H. Sato, R. Murakami, J. Zhang and Y. Ozaki: Polymer Vol. 48 (2007), p.1749.

Google Scholar

[16] T. Furukawa, H. Sato, R. Murakami and Y. Ozaki: Macromolecules Vol. 38 (2005), p.6445.

Google Scholar

[17] Y. Liu, L. Cui, F. Guan, N. E. Hedin and H. Fong: Macromolecules Vol. 40 (2007), p.6283.

Google Scholar

[18] L. L. Zhang, S. H. Goh, S. Y. Lee and G. R. Hee: Polymer Vol. 41 (2000), p.1429.

Google Scholar

[19] H. Mitomo, N. Morishita and Y. Doi: Macromolecules Vol. 26 (1993), p.5809.

Google Scholar