Nano-Coating Texture on the Shear Slip Surface in Rocky Materials

Article Preview

Abstract:

Through SEM observation from natural and experimental examples of rocky materials, nanocoating texture was found on the shear slip surface (plane, lamellae). Our researching suggested that the nanocoating possesses some textural characteristics including granular, delaminating and rheological one. In general, single nano-sized grain (40-80 nm in diameter) with moderate roundness and sphericity could aggregate into the compound grain, and thickness of the nanocoating (thin shell, film) might reach from μm to cm scale in different rocky materials. Development of the nanocoating textures of shear slip surface could be subdivided into three stages, i.e. strain hardness, strain softening and strain decaying stage, and its forming mechanism is quite similar to the “tribological white layer” which is very common phenomena in metallography. Furthermore, it is determined that the nanocoating lamellae in rocky materials might be capable to constitute a shelter for a reservoir.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

108-114

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Wirth, Focused Ion Beam (FIB): A novel technology for advanced application of micro-and nano-analysis in geosciences and applied mineralogy, Eur Jour Mineral, 16 (2004) 863-876.

DOI: 10.1127/0935-1221/2004/0016-0863

Google Scholar

[2] B. Bhushan, Nanotribology and nanomechanics, Wear. 259 (2005) 1507-1531.

DOI: 10.1016/j.wear.2005.01.010

Google Scholar

[3] N. Kambe, Highly uniform nano-structured building blocks of metal and their compounds, Script Mater. 44 (2001) 1671-1675.

DOI: 10.1016/s1359-6462(01)00880-6

Google Scholar

[4] H. R. Wenk, Are pseudotachylites products of fracture of fusion? Geology. 6 (1978) 507-511.

Google Scholar

[5] B.B. Bakken, M. F. Hochella, Jr. A. F Marshall, High-resolution microscopy of gold in unoxidized ore from the Carlin mine, Nevada Econ Geol., 84 (1989) 171-179.

DOI: 10.2113/gsecongeo.84.1.171

Google Scholar

[6] C. Y. Wang, Y. Sun, Oriented micro-fracture in Cajon Pass drill cores: stress field near the San Andreas Fault, J Geophys Res. 95 (1990) 11135-11142.

DOI: 10.1029/jb095ib07p11135

Google Scholar

[7] H. P. Ge, Y. Sun, X. C. Lu, W. B. Zhu, Guo Jichun, Discovery and analysis of ultra-micro grinding grain texture in sliding lammelae of ductile-brittle zone, Sci China Ser D-Earth Sci. 47 (2004) 265-271.

DOI: 10.1360/02yd0159

Google Scholar

[8] S. D. Mair, S. Abe, 3D numerical simulations of fault gouge evolution during shear: Grin size reduction and strain cocalization, Earth and Planetary Science Letter, 274 (2008) 72-81.

DOI: 10.1016/j.epsl.2008.07.010

Google Scholar

[9] R. Yund, M. Blanpied, T. Tullis, et al., Amorphous material in high strain experimental fault gouges, J. Geophysices Res. 95 (1990) 15589-15602.

DOI: 10.1029/jb095ib10p15589

Google Scholar

[10] Y. Sun, X. C. Lu, X. H. Zhang, H. Liu, A. M. Lin, Nano-texture of penetrative foliation in metamorphic rocks, Science in China Ser D- Earth Sci. 51 (2008) 1750-1758.

DOI: 10.1007/s11430-008-0138-9

Google Scholar

[11] J. Hippett, C. Lana, T. Takeshita, Deformation partitioning during folding of banded iron formation, J. Struct Geol. 23 (2001) 820-834.

DOI: 10.1016/s0191-8141(00)00128-0

Google Scholar

[12] M. L. Willians, E. A. Mells, C.F. Kopf, Microstructural tectonometamorphic process and the development of geneissic layering: A mechanism for metamorphic segregation, J. Metamo Geol. 18 (2000) 41-57.

DOI: 10.1046/j.1525-1314.2000.00235.x

Google Scholar

[13] M. L. Cooke, C. A Underwood, Fracture termination and step over at bedding interface due to frictional slip and interface opening, J. struct Geol. 23 (2001) 223-238.

DOI: 10.1016/s0191-8141(00)00092-4

Google Scholar

[14] C. Viti, T. Hirose, Thermal deformation of serpentine during coseismic faulting: Nanostructures and mineral reactions, J. Struct Geol. 32 (2010) 1476-1484.

DOI: 10.1016/j.jsg.2010.09.009

Google Scholar

[15] P. R. Dawson, Modeling deformation of polycrystalline rocks, Rev Miner Geochem. 51 (2002) 331-52.

Google Scholar

[16] M. Stewart, R. E. Holdsworth, R. A. Strachan, Deformation processes and weakening mechanisms within the frictional-viscous transition zone of major crystal-scale fault: Insights from the Great Glen Fault Zone, Scotland, J Struct Geol. 22 (2000).

DOI: 10.1016/s0191-8141(99)00164-9

Google Scholar

[17] N. Mandal, S. K. Samanta, C. Chakraborty, Numerical modeling of heterogeneous flow fields around rigid objects with special reference to particle paths strain shadows and foliation drag, Tectonophysics. 330 (2001) 177-94.

DOI: 10.1016/s0040-1951(00)00223-7

Google Scholar

[18] K. O' Hara, Reaction weakening and emplacement of crystalline thrusts: Diffusion control on reaction rate and strain, J Struct Geol. 29 (2007) 1301-1334.

DOI: 10.1016/j.jsg.2007.04.004

Google Scholar

[19] H. R. Green, C. Marona, Instability of deformation, Rev Miner Geochem. 51(2002) 181-220.

Google Scholar

[20] N. Kambe, Highly uniform nano-stuctured building blocks of metal-(O, C, N, S) and their complex compounds, Script Materialia. 44 (2001) 1671-1675.

DOI: 10.1016/s1359-6462(01)00880-6

Google Scholar

[21] S. Veprek, A. Niederhofer, K. Moto, et al., Composition nanostructure and origin of ultrahardness in nc-TiN/a –Si3N4/a-nc-TiSi2 anocomposites with Hv=80 to ≥105 GPa, Surf Coat Tech. 133-134 (2001) 152-9.

DOI: 10.1016/s0257-8972(00)00957-9

Google Scholar

[22] E. Kusano, M. Kitagawa, A. Satoh, et al., Hardness of compositionally nano-modulated TiN, Nano-struct Mat. 12 (1999) 807-10.

DOI: 10.1016/s0965-9773(99)00240-8

Google Scholar

[23] J. Musil, Hard and superhard nano composite coating, Surf Coat Tech. 125 (2000) 322-30.

Google Scholar

[24] S. Y. Tarassov, A.V. Kolubaev, Effect of on subsurface layer microstructure in austenitic and martensitic steels, Wear. 231 (1999) 228-234.

DOI: 10.1016/s0043-1648(99)00107-6

Google Scholar

[25] A. M. Schlecher, V. der. Pluijm, L. N. Warr, Nanocoatings of clay and creep of the San Andreas Fault at Park field, California, Geology, 38 (2010) 667-670.

DOI: 10.1130/g31091.1

Google Scholar

[26] G. Yielding, B. Freeman, T. Needham, Quantitative fault seal predication, AAPG Bulletin. 81 (1997) 897-917.

Google Scholar