Synthesis and Electrorheological Properties of SiO2/Polyaniline Nanocomposites Prepared by In Situ Polymerization

Article Preview

Abstract:

SiO2/polyaniline (PANI) nanocomposites were obtained by chemical oxidative polymerization using ammonium peroxydisulfate as oxidizing agent. The FE-SEM and TEM images showed that nanocomposites presented the core-shell structure with raspberry morphology. The electrorheological (ER) effect of those materials was enhanced by using the ammonium hydroxide to deprotonate the corresponding PANI base. It was found that the yield stress of those ER fluids and its near linear dependence on the electric field were different from the conventional ER fluids.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

131-137

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Whittle, W.A. Bullogh, The structure of smart fluids, Nature 358 (1992) 373.

Google Scholar

[2] W.M. Winslow, Induced fibrillation of suspensions, J. Appl. Phys. 20 (1949) 1137-1140.

Google Scholar

[3] T.C. Halsey, Electrorheological fluids, Science 258 (1992) 761-766.

Google Scholar

[4] T. Hao, Electrological fluids, Adv. Mater. 13 (2001)1847-1857.

Google Scholar

[5] B.X. Wang, X.P. Zhao, Preparation of kaolinite/titania coated nanocomposite particles and their electrorheological properties, J. Mater. Chem. 13 (2003) 2248-2253.

DOI: 10.1039/b305718f

Google Scholar

[6] J.W. Kim, Y.H. Cho, H.G. Lee, S.B. Choi, Electrorheological SemiActive Damper: Polyaniline Based ER System, J. Intell. Mater. Syst. Struct. 13 (2002) 509-513.

Google Scholar

[7] W.J. Wen, X.X. Huang, S.H. Yang, K.Q. Lu, P. Shen, The giant electrorheological effect in suspensions of nanoparticles, Nat. Mater. 2 (2003) 727-730.

DOI: 10.1038/nmat993

Google Scholar

[8] K.Q. Lu, R. Shen, X.Z. Wang, G. Sun, W.J. Wen, J.X. Liu, Polar molecule dominated electrorheological effect, Chin. Phys. 15 (2006) 2476.

Google Scholar

[9] J.B. Yin, X.P. Zhao, Giant electrorheological activity of high surface area mesoporous cerium-doped TiO2 templated by block copolymer, Chem. Phys. Lett. 398(2004) 393-399.

DOI: 10.1016/j.cplett.2004.09.098

Google Scholar

[10] W.J. Wen, X.X. Huang, P. Sheng, Electrorheological fluids: structures and mechanisms, Soft Matter. 4(2008) 200-210.

DOI: 10.1039/b710948m

Google Scholar

[11] K.Q. Lu, R. Shen, X.Z. Wang, G. Sun, Polar molecule type electrorheological fluids, Int. J. Mod. Phys. B. 21 (2007) 4798.

DOI: 10.1142/s0217979207045682

Google Scholar

[12] C.J. Gow, C.F. Zukoski IV, The electrorheological properties of polyaniline suspensions, J. Colloid Interface Sci. 136 (1990) 175-188.

DOI: 10.1016/0021-9797(90)90088-6

Google Scholar

[13] H.Q. Xie, J.G. Guan, Study on electrorheological properties of semiconducting polyaniline-based suspensions, Angew. Makromol. Chem. 235 (1996) 21-34.

Google Scholar

[14] H.J. Choi, T.W. Kim, M.S. Cho, S.G. Kim, M.S. Jhon, Electrorheological characterization of polyaniline dispersions, Eur. Polym. J. 33 (1997) 699-703.

DOI: 10.1016/s0014-3057(96)00225-x

Google Scholar

[15] H.J. Choi, J.W. Kim, K. To, Electrorheological characteristics of semiconducting poly(aniline-co-o-ethoxyaniline) suspension, Polymer. 40 (1999) 2163-2166.

DOI: 10.1016/s0032-3861(98)00418-2

Google Scholar

[16] J. Jiang, L.C. Li, M.L. Zhu, Polyaniline/magnetic ferrite nanocomposites obtained by in situ polymerization, React. Funct. Polym. 68 (2008) 57-62.

DOI: 10.1016/j.reactfunctpolym.2007.10.010

Google Scholar

[17] A. Lengá lová, V. Pavlí nek, P. Sá ha, J. Stejskal, T. Kitano, O. Quadrat, The effect of dielectric properties on the electrorheology of suspensions of silica particles coated with polyaniline, Physica A. 321 (2003) 411-424.

DOI: 10.1016/s0378-4371(02)01734-x

Google Scholar

[18] S.P. Armes, S. Gottesfeld, J.G. Beery, F. Garzon, S.F. Agnew, Conducting polymer-colloidal silica composites, Polymer. 32 (1991) 2325-2330.

DOI: 10.1016/0032-3861(91)90068-t

Google Scholar

[19] N. Kuramoto, M. Yamazaki, K. Nagai, K. Koyama, K. Tanaka, K. Yatsuzuka, Electrorheological property of a polyaniline-coated silica suspension, Thin Solid Films. 239 (1994) 169-171.

DOI: 10.1016/0040-6090(94)90845-1

Google Scholar

[20] A. Gromov, V. Korenivski, Electromagnetic analysis of layered magnetic/conductor structures, J Phys D: Appl. Phys. 33 (2000) 773.

DOI: 10.1088/0022-3727/33/7/304

Google Scholar

[21] J. Stejskal, O. Quadrat, I. Sapurina, J. Zemek, A. Drelinkiewicz, M. Hasik, I. Krivka, J. Prokes, Polyaniline-coated silica gel, Eur. Polym. J. 38 (2002 ) 631-637.

DOI: 10.1016/s0014-3057(01)00241-5

Google Scholar

[22] K.G. Neoh, K.K. Tan, P.L. Goh, S.W. Huang, E.T. Kang, K.L. Tan, Electroactive polymer-SiO2 nanocomposites for metal uptake, Polymer. 40 (1999) 887-893.

DOI: 10.1016/s0032-3861(98)00297-3

Google Scholar

[23] S.W. Huang, K.G. Neoh, E.T. Kang, H.S. Han, K.L. Tan, Palladium-containing polyaniline and polypyrrole microparticles, J. Mater. Chem. 8 (1998)1743-1748.

DOI: 10.1039/a802245c

Google Scholar

[24] R. Shen, X.Z. Wang, W.J. Wen, K.Q. Lu, TiO2 based electrorheological fluid with high yield stress, Int. J. Mod. Phys. B. 19 (2005), 1104.

DOI: 10.1142/s0217979205029924

Google Scholar

[25] V. Pavlínek, P. Sáha, T. Kitano, J. Stejskal, O. Quadrat, The effect of polyaniline layer deposited on silica particles on electrorheological and dielectric properties of their silicone–oil suspensions, Physica A. 353 (2005) 21-28.

DOI: 10.1016/j.physa.2005.01.033

Google Scholar