Interface Constraint Effect and Stress Relaxation in Nano-Sandwiched Thin Film

Article Preview

Abstract:

Micro-particles and nano-wires, small outgrowths were found to appear on upper film surface when metal thin film is confined between two Si3N4 layers deposited by magnetron sputtering and is annealed at an appropriate temperature. The stress evolution during this process is monitored by multi-beam optic stress sensor, and is qualitatively interpreted in terms of elastic and plastic deformation, as well as bulk diffusion. Additionally, the interface constraint effect among different layers is explored. Stress relaxation of nano-sandwiched thin films behaves in different stress modes. As a comparative study, Si3N4/Zn/Si3N4 sandwiches were prepared and studied by the same method. Experimental results show that the pertinent geometry is strongly dependent on material types and stress states of the substrates. Finally, an appropriate mode was suggested to interpret this phenomenon.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

154-160

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E.T. Swartz and R.O. Pohl, Thermal boundary resistance, Rev. Mod. Phys. 61 (1989) 605-668.

DOI: 10.1103/revmodphys.61.605

Google Scholar

[2] G. Balasubramanian, S. Banerjee and I. K. Puri, Unsteady nanoscale thermal transport across a solid-fluid interface, J. Appl. Phys. 104 (2008) 064306(4pp).

DOI: 10.1063/1.2978245

Google Scholar

[3] T.W. Zhang, F. Ma, W.L. Zhang, D.Y. Ma, K.W. Xu and P.K. Chu Diffusion-controlled formation mechanism of dual-phase structure during Al induced crystallization of SiGe, Appl Phys Lett 100 (2012) 071908(3pp).

DOI: 10.1063/1.3685712

Google Scholar

[4] D.G. Cahill, W.K. Ford, K.E. Goodson, G.D. Mahan, A. Majumdar, H.J. Maris, R. Merlin and S.R. Phillpop, Nanoscale thermal transport, J. Appl. Phys. 93 (2003) 793-818.

DOI: 10.1063/1.1524305

Google Scholar

[5] L.B. Freund and S. Suresh, Cambridge University Press, Cambridge, UK (2003).

Google Scholar

[6] D. Josell, T.P. Weihs and H. Gao, Diffusional creep: stresses and strain rates in thin films and multilayers, MRS Bull 27 (2002) 39-44.

DOI: 10.1557/mrs2002.18

Google Scholar

[7] D. Weiss, H. Gao and E. Arzt, Constrained diffusional creep in uhv-produced copper thin films, Acta mater. 49 (2001) 2395-2403.

DOI: 10.1016/s1359-6454(01)00168-9

Google Scholar

[8] P.A. Flinn, D.S. Gardner and W.D. Nix, Measurement and interpretation of stress in aluminum-based metallization as a function of thermal history, IEEE Trans. Electr. Dev. 34 (1987) 689-699.

DOI: 10.1109/t-ed.1987.22981

Google Scholar

[9] M.D. Thouless, K.P. Rodbell and C.J. Cabral, Effect of a surface layer on the stress relaxation of thin films, J. Vac. Sci. Tech. A 14 (1996) 2454-2461.

DOI: 10.1116/1.580036

Google Scholar

[10] M. Takagi, Electron-diffraction study of liquid-solid transistion of thin metal films, J. Phys. Soc. Jpn. 9 (1954) 359-363.

DOI: 10.1143/jpsj.9.359

Google Scholar

[11] N.T. Gladkich, R. Niedermayer and K. Spiegel, nachweis grober schmelzpunkt serniedrigungen bei dünnen metallschichten, Phys. Status Solidi B 15 (1966) 181-192.

DOI: 10.1515/9783112492505-017

Google Scholar

[12] N.T. Gladkich, S.I. Bogatyrenko, A.P. Kryshtal and R. Anton, Melting point lowering of thin metal films (Me = In, Sn, Bi, Pb) in Al/Me/Al film system, Applied Surface Science 219 (2003) 338-346.

DOI: 10.1016/s0169-4332(03)00707-4

Google Scholar

[13] M.D. Thouless, J. Gupta and J.M.E. Harper, Stress development and relaxation in copper films during thermal cycling, J. Mater. Res. 8 (1993) 1845-1852.

DOI: 10.1557/jmr.1993.1845

Google Scholar

[14] H.J. Frost and M.F. Ashby, Deformation-mechanism Maps. (Pergamon Press, Oxford) (1982).

Google Scholar

[15] G.B. Gibbs, Diffusion creep of a thin foil, Phil. Mag. 13 (1966) 589-593.

Google Scholar

[16] M.J. Thouless and C.V. Thompson, The thickness dependence of the ow stress of capped and uncapped polycrystalline ag thin film, Appl. Phys. Lett. 73 (1998) 2429-2431.

DOI: 10.1063/1.122471

Google Scholar

[17] R.M. Keller, S.P. Baker and E. Arzt, Quantitative analysis of strengthening mechanisms in thin cu flms: effects of flm thickness, grain size, and passivation, Acta mater. 47 (1999) 415-426.

DOI: 10.1557/jmr.1998.0186

Google Scholar

[18] Banerjee A and Hancock J W, The role of constraint in the fields of a crack normal to the interface between elastically and plastically mismatched solids, 2004 J. Mech Phys Solids 52 1093-1108.

DOI: 10.1016/j.jmps.2003.09.001

Google Scholar

[19] J. Sumpter and J.W. Hancock, 10th European Conference on Fracture, Berlin, Germany, 1994, 617-626.

Google Scholar

[20] Y.J. Kim, G.Y. Lin, A. Cornec and K.H. Schwalbe, Mechanical behaviour of austenitic steel 316L mod. specimens with incipient cracks,. Int.J. Fract. 78 (1996) 21-28.

Google Scholar

[21] R. Khare, P. Keblinski and A. Yethiraj, Molecular dynamics simulations of heat and momentum transfer at a solid-fluid interface: Relationship between thermal and velocity slip, Int. J. Heat Mass Transfer 49 (2006) 3401-3407.

DOI: 10.1016/j.ijheatmasstransfer.2006.03.005

Google Scholar

[22] B. Ganesh, B. Soumik and K.P. Ishwar, Unsteady nanoscale thermal transport across a solid-fluid interface, J. Appl. Phys. 104 (2008) 064306(4pp).

Google Scholar

[23] H.L. Sun, Z.X. Song, F. Ma, J.M. Zhan and K.W. Xu, Microstructure, formation mechanism and compression plasticity of regularly faceted Cu particles, Scripta Materialia 60 (2009) 305-308.

DOI: 10.1016/j.scriptamat.2008.10.027

Google Scholar

[24] O. Nast and S.R. Wenham, Elucidation of the layer exchange mechanism in the formation of polycrystalline silicon by aluminum-induced crystallization, J. Appl. Phys. 88 (2000) 124-132.

DOI: 10.1063/1.373632

Google Scholar

[25] Z.M. Wang, J.Y. Wang, L.P.H. Jeurgens, and E.J. Mittemeijer, Thermodynamics and mechanism of metal-induced crystallization in immiscible alloy systems: Experiments and calculations on Al/a-Ge and Al/a-Si bilayers, Phys. Rev. B 77 (2008).

DOI: 10.1103/physrevb.77.045424

Google Scholar

[26] W.J. Yu, Y.J. Zhang and Q.L. Ye, Spontaneous formation of ordered patterns in Al films deposited on silicone oil surfaces, Phys. Rev. B 68 (2003) 193403(4pp).

DOI: 10.1103/physrevb.68.193403

Google Scholar