Comparative Study on the Effective Dielectric Constant of the Graded Composites

Article Preview

Abstract:

The effective dielectric constant of the graded composites was calculated with three different methods, namely, the nonlinear differential effective dipole approximation method (NDEDA), the Maxwell-Garnette method (MGT) and the sum rule method (Sum). In each layer of the graded composites, the distribution of the dielectric constant follows a Drude form. Our numerical results show that when the number of layers N inside the graded composites increases, a gradual transition from sharp peaks to an emerging broad continuous band is clearly obtained. Moreover, the results obtained by the MGT and sum rule methods achieve a good agreement with that by the NDEDA method when N is approaching infinity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

192-196

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. W. Milton, The Theory of Composites, Cambridge University Press, Cambridge, England, (2002).

Google Scholar

[2] P. M. Hui, X. Zhang, A. J. Markworth, and D. Stroud J. Mater. Sci. 34, 5497 (1999).

Google Scholar

[3] E. B. Wei and Z. K. Wu J. Phys.: Condens. Matter 16, 5377 (2004).

Google Scholar

[4] Stuart Martin Lindsay, Introduction to nanoscience, Oxford University Press, 2010. Chap. 4.

Google Scholar

[5] Sandia National Laboratory LENS article.

Google Scholar

[6] G. L. Fischer, R. W. Boyd, R. J. Gehr, S. A. Jenekhe, J. A. Osaheni, J. E. Sipe, and L. A. Weller-Brophy, Phys. Rev. Lett. 74, 1871 (1995).

DOI: 10.1103/physrevlett.74.1871

Google Scholar

[7] N. N. Lepeshkin, A. Schweinsberg, G. Piredda, R. S. Bennink, and R. W. Boyd, Phys. Rev. Lett. 93, 123902 (2004).

Google Scholar

[8] W. S. Cai, D. A. Genov, and V. M. Shalaev Phys. Rev. B 72, 193101 (2005).

Google Scholar

[9] D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, Science 286, 1523 (1999).

DOI: 10.1126/science.286.5444.1523

Google Scholar

[10] J. D. Jackson, Classical Electrodynamics Wiley, New York, (1975).

Google Scholar

[11] B. Liu, L. Gao, and K. W. Yu Phys. Rev. B 72, 214208 (2005).

Google Scholar

[12] J. P. Huang, L. Dong, and K. W. Yu J. Appl. Phys. 99, 053503 (2006).

Google Scholar

[13] J. P. Huang, L. Dong, and K. W. Yu, Europhys. Lett. 67 854 (2004).

Google Scholar

[14] L. Dong, G. Q. Gu, and K. W. Yu, Phys. Rev. B 67, 224205 (2003).

Google Scholar

[15] D. Stroud and P. M. Hui, Phys. Rev. B 37, 8719 (1988).

Google Scholar

[16] L. Gao, J. P. Huang, and K. W. Yu, Phys. Rev. B 69, 075105 (2004).

Google Scholar

[17] J. P. Huang and K. W. Yu, Phys. Rep. 431 87 (2006).

Google Scholar

[18] J. P. Huang and K. W. Yu, Appl. Phys. Lett. 86 041905 (2005).

Google Scholar