FTIR and WAXD Study of Regenerated Silk Fibroin

Article Preview

Abstract:

In this study, regenerated Bombyx Mori (B. Mori ) silk fibroin from two aqueous solvents was analyzed for structural deviations. Results from Fourier transform infrared spectroscopy (FTIR) and Wide angle x-ray diffraction (WAXD) implied great alteration in the secondary structure, crystallinity and molecular weight due to the regeneration process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

211-215

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. H. Parka, L. Jeonga, D. Yoob, and S. Hudson: Polymer Vol. 45, (2004), p.7151.

Google Scholar

[2] Information on http://en.wikipedia.org/wiki/Fibroin (retrieved on April 25, 2012).

Google Scholar

[3] R. Valluzzi, S.P. Gido, W. Muller, and D. L. Kaplan: Int J Biol Macromol Vol. 24, (1999), p.237

Google Scholar

[4] H. J. Jin, and D.L. Kaplan: Nature Vol. 424, (2003), p.1057

Google Scholar

[5] S.J He, R. Valluzzi, and S.P Gido: Int J Biol Macromol Vol. 24, (1999), p.187

Google Scholar

[6] H. Kweon, and Y. H. Park: J Appl Polym Sci Vol. 82 (2001), p.750

Google Scholar

[7] S. Krimm and J. Bandekar, Adv Protein Chem Vol. 38 (1986), p.18.

Google Scholar

[8] G. Susanne, K. Hartmut, R. Christian, W. Paul, and L. Sophia in "Scientific Analysis of Ancient and Historic Textiles", First Annual Conference of the AHRC Research Centre for Textile Conservation and Textile Studies, (J. Rob and W. Paul, Ed)., pp.38-43, London, UK, Archetype, (2005).

Google Scholar

[9] J. Ayutsede, M. Gandhi, S. Sukigara, M. Micklus, H.E. Chen, and F. Ko: Polymer Vol 46, (2005), P.1625

DOI: 10.1016/j.polymer.2004.11.029

Google Scholar

[10] Y.Q. Zhang, J. Zhu, and R.A. Gu: Appl Biochem Biotechnol Vol. 75 (1998), P. 215

Google Scholar

[11] C.L. Wilder, A.D. Friedrich, R.O. Pons, G.O. Daumy, M.L. Francoeur: Biochemistry Vol. 31 (1992), p.27

Google Scholar

[12] M. Jackson and H.H. Mantsch: Crit Rev Biochem Mol Biol Vol. 30(2) (1995) p.95

Google Scholar

[13] Barth: Prog Biophys Mol Biol Vol. 74 (2000), p.141

Google Scholar

[14] D. M. Byler and H. Susi: Biopolymers Vol. 25(3), (1986), p.469

Google Scholar

[15] J. Kong and S. Yu: Acta Biochimica et Biophysica Sinica Vol. 39(8), (2007), p.549

Google Scholar

[16] L. K. Tamm and S.A. Tatulian: Q Rev Biophys Vol. 30(4), (1997), p.365

Google Scholar

[17] C.R. Cantor and P.R. Schimmel: Biophysical Chemistry, part II: Techniques for the study of biological structure and function (WH Freeman & Co, San Francisco 1980)

Google Scholar

[18] T. Asakura, A. Kuzuhara, R. Tabeta and H. Saito: Macromolecules Vol. 18 (1985), p.1841

Google Scholar

[19] P. H. Hermans, A. Weidinger: J Appl Phys Vol. 19(5), (1948), p.491

Google Scholar

[20] S. W. Ha, Y. H. Park, S. M. Hudson: Biomacromolecules Vol. 4 (2003), p.488

Google Scholar

[21] Y.Q. Zhang, W.D. Shen, R.L. Xiang, L.J. Zhuge, W.J Gao, and W.B Wang: J Nanopart Res Vol. 9 (2007), p.885

Google Scholar

[22] A.Weidinger, P. H Hermans: Die Makromoleculare Chemie Vol 50 (1961), p.98

Google Scholar