An Adaptive Element-Free Galerkin Method Based on the Strain Energy Density

Article Preview

Abstract:

In practical study, an adaptive procedure based on the gradient of the strain energy density is developed for element-free Galerkin method using moving least-squares (MLS) approximation and global Galerkin formulation require a background mesh for domain integration. It comprises nodal strain energy density and a local domain refinement technique. The numerical experiments in this paper show that this adaptive element-free Galerkin method is simple, effective and efficient.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

225-229

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Dolbow and T. Belytschko: Archives of Computation Methods in Engineering, Vol. 5, 3 (1998), P. 207.

Google Scholar

[2] X. Liu, D. M. Zhu, M. W. Lu, el al: ACTA MECHANICA SINICA, Vol. 32(2000), P. 308.

Google Scholar

[3] Z. Zhang, G. Liu, T. X. Liu, el al: Journal of Northw estern Polytechnical University, Vol. 26(2008), P. 265.

Google Scholar

[4] Canh V. Le, Harm Askes, Matthew Gilbert: Computer Method in Applied Mechanics and Engineering, Vol. 199(2010), P. 2487.

Google Scholar

[5] X. Y. Zhuang, C. Heaney, C. Augarde: Engineering Analysis with Boundary Elements, Vol. 36(2012), P. 351.

Google Scholar

[6] C.K. Lee, C.E. Zhou: Computers and Structures, Vol. 82(2004), P. 429.

Google Scholar

[7] C. Armando Duarte, J. Tinsley Oden: Comput. Methods Appl. Mech. Engrg, Vol. 139 (1996), P. 237.

Google Scholar

[8] R. Rossi, M. K. Alves: European Journal of Mechanics A/Solids, Vol. 24(2005), P. 782.

Google Scholar

[9] G.R. Liu, Z.H. Tu: Comput. Methods Appl. Mehn. Engrg, Vol. 191(2002), P. (1923).

Google Scholar

[10] Y. H. Luo, U. H. Combe: Meshfree methods for partial differential equations, Springer(2003).

Google Scholar