MeV Electron-Beam Induced Clusterization of Platinum Chloride on Graphene for Transparent Conductive Electrodes

Article Preview

Abstract:

The use of graphene-based transparent conductive electrodes critically depends upon the enhancement of electrical conductivity with a negligible loss of optical transmittance of graphene. Hence, the hybridization of graphene and metal nanostructures has been intensively investigated to improve electrical conductivity. Here we demonstrate clusterization of PtCl2 on graphene by a facile method, MeV electron-beam irradiation (MEBI) under ambient conditions, as characterized by scanning electron microscopy, transmittance electron microscopy, and resonant Raman spectroscopy. The workfunction difference between PtCl2 nanoclusters and graphene results in p-type doping of graphene, to achieve a reduced sheet resistance of 69.1 % with respect to that of pristine graphene while maintaining transmittance of 91.7 %. The mechanism of formation of PtCl2 nanoclusters on graphene is likely to be defect-mediated clusterization due to the high energy electron-beam.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

25-30

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. K. Geim, Science, vol. 324, p.1530, (2009).

Google Scholar

[2] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science, vol. 306, p.666, (2004).

DOI: 10.1126/science.1102896

Google Scholar

[3] Y. Zhang, Y. -W. Tan, H. L. Stormer, and P. Kim, Nature, vol. 438, p.201, (2005).

Google Scholar

[4] K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, Science, vol. 315, p.1379, (2007).

DOI: 10.1126/science.1137201

Google Scholar

[5] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, Science, vol. 320, p.1308, (2008).

DOI: 10.1126/science.1156965

Google Scholar

[6] K. K. Kim, A. Reina, Y. Shi, H. Park, L. -J. Li, Y. H. Lee, and J. Kong, Nanotechnology, vol. 21, no. 285205, p.1, (2010).

Google Scholar

[7] S. Guo, D. Wen, Y. Zhai, S. Dong, and E. Wang, ACS Nano, vol. 4, no. 7, p.3959, (2010).

Google Scholar

[8] K.S. Subrahmanyam, A. K. Manna, S. K. Pati, C.N.R. Rao, Chemical Physics Letters, vol. 497 , p.70 , (2010).

Google Scholar

[9] S. Huh, J. Park, K. S. Kim, B-H Hong, and S-B Kim, American Chemical Society Nano, vol. 5, no. 5, p.3639, (2011).

Google Scholar

[10] W. Song, C. Jeon, M. Kim, Y. T. Kwon, D. S. Jung, S. Y. Kim, W. S. Jung, Y. Kim, S. Y. Lee, W. C. Choi, Y. H. Han, B. C. Lee, and C. -Y. Park, Carbon, vol. 49, p.1692, (2011).

DOI: 10.1016/j.carbon.2010.12.054

Google Scholar

[11] W. Song, S. H. Kim, Y. Kim, S. Y. Kim, C. Jeon, W. C. Choi, B. C. Lee, and C. -Y. Park, Japanese Journal of Applied Physics, vol. 50, no. 045102, p.1, (2011).

Google Scholar

[12] X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, Nano Letters, vol. 9, p.4359, (2009).

DOI: 10.1021/nl902623y

Google Scholar

[13] B. C. Lee, Y. U. Jeong, S. O. Cho, J. Lee, S. Miginsky, and G. Kulipanov, Nuclear Instruments and Methods in Physics Research Section A, vol. 429, p.352, (1999).

DOI: 10.1016/s0168-9002(99)00086-8

Google Scholar

[14] Z.Q. Tian, S. P. Jiang, Y. M. Liang, and P. K. Shen, The Journal of Physical Chemistry B, vol. 110, p.5343, (2006).

Google Scholar

[15] D. J. Late, U. Maitra, L. S. Panchakarla, U. V. Waghmare and C. N. R. Rao, Journal of Physics: Condensed Matter, vol. 23, no. 055303, p.1, (2011).

Google Scholar

[16] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Physical Review Letters, vol. 97, no. 187401, p.1, (2006).

DOI: 10.1103/physrevlett.97.187401

Google Scholar

[17] Y. J. Yu, Y. Zhao, S. Ryu, L. E. Brus, K. S. Kim and P. Kim, Nano Letters, vol. 9 (10), p.3430, (2009).

Google Scholar

[18] B. Ritz, H. Heller, A. Myalitsin, A. Kornowski, F. J. M-. Martinez, S. Melchor, J. A. Dobado, B. H. Juarez, H. Weller, and C. Klinke, American Chemical Society Nano, vol. 4, p.2438, (2010).

DOI: 10.1021/nn100240c

Google Scholar

[19] S. Bae, H. Kim, Y. Lee, X. Xu, J. -S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. -J. Kim, K. S. Kim, B. Ozyilaz, J. -H. Ahn, B. H. Hong, and S. Iijima, Nature Nanotechnology, vol. 5, p.574, (2010).

DOI: 10.1038/nnano.2010.132

Google Scholar