Optical and Structural Properties of ZnO Nanorods Prepared by Chemical Bath Deposition Method

Article Preview

Abstract:

Abstract The Chemical bath deposition method was used for the preparation of ZnO nanorods and their optical and structural properties were studied. ZnO seed layer thin films were prepared by chemical bath deposition technique on to well cleaned glass substrates. ZnO seed-coated glass substrates were immersed in aqueous solution of zinc nitrate and hexamethylenetetramine (HMT) on 1:10 molar concentration at 90°C for 4 hours and annealed at different temperatures. The effect of annealing temperatures on the surface morphology and optical properties of the films was studied. The structure of the ZnO nano rod was studied by X-ray diffractometer and scanning electron microscopy. The optical property was studied by UV-Vis spectroscopy and photoluminescence spectroscopy. Experimental results have shown that prepared ZnO nanorods by this method have higher photoluminescence

You might also be interested in these eBooks

Info:

Periodical:

Pages:

207-211

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B.J. Jin, S.H. Bae, S.Y. Lee, S. Im, Mater. Sci. Eng. B 71 (2000) 301.

Google Scholar

[2] P. Zu, Z.K. Tang, G.K.L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa, Solid State Commun. 103 (1997) 459.

DOI: 10.1016/s0038-1098(97)00216-0

Google Scholar

[3] E. Ohshima, H. Ogino, I. Niikura, K. Maeda, M. Sato, M. Ito, T. Fukuda, J. Cryst. Growth 260 (2004) 166.

Google Scholar

[4] T.L. Yang, D.H. Zhang, J. Ma, H.L. Ma, Y. Chen, Thin Solid Films 326 (1998) 60.

Google Scholar

[5] B. Sang, A. Yamada, M. Konagai, Jpn. J. Appl. Phys. 37 (1998) L206.

Google Scholar

[6] J.F. Cordaro, Y. Shim, J.E. May, J. Appl. Phys. 60 (1986) 4186.

Google Scholar

[7] P. Verardi, N. Nastase, C. Gherasim, C. Ghica, M. Dinescu, R. Dinu, C. Flueraru, J. Cryst. Growth 197 (1999) 523.

DOI: 10.1016/s0022-0248(98)00808-2

Google Scholar

[8] R.J. Lanf, W.D. Bond, Am. Ceram. Soc. Bull. 63 (1984) 278.

Google Scholar

[9] E. Ivers-Tiffee, K. Seitz, Am. Ceram. Soc. Bull. 66 (1987) 1384.

Google Scholar

[10] N.Y. Lee, M.S. Kim, J. Mater. Sci. 26 (1991) 1126.

Google Scholar

[11] S.M. Haile, D.W. Jonhagon, G.H. Wiserm, J. Am. Ceram. Soc. 72 (1989) (2004).

Google Scholar

[12] C.H. Lu, C.H. Yeh, Ceram. Int. 26 (2000) 351.

Google Scholar

[13] W.J. Li, E.W. Shi, W.Z. Zhong, Z. Yin, J. Cryst. Growth 203 (1999) 186.

Google Scholar

[14] M.C. Neves, T. Trindade, A.M.B. Timmons, J.D. Pedrosa de Jesus, Mater. Res. Bull. 36 (2001) 1099.

Google Scholar

[15] J. Zhang, L. Sun, H. Pan, C. Liao, C. Yan, New J. Chem. 26 (2002) 33.

Google Scholar

[16] C. Xu, G. Xu, Y. Liu, G. Wang, Solid State Commun. 122 (2002)175.

Google Scholar

[17] S. A. Studenikin, N. Golego, and M. Cocivera, J. Appl. Phys. 84, 2287 (1998).

Google Scholar