ZnO Nanorods by a Simple Two Step Process

Article Preview

Abstract:

Low-dimension materials such as nanobelts, nanowires and nanorods are being investigated for their superior properties and numerous applications. Among them, one-dimensional semiconductor ZnO, representing one of the most important low dimensional materials, finds its applications in many different fields such as sensors, solar cells, IR detectors, microelectronics, etc. Synthesis of nanostructures without any catalytic template, or using the self-catalytic behavior of the material would be of interest. In this work, ZnO nanorods have been synthesized by simple two step process without using any catalyst. This method provides an easy way to produce nanostructured metal oxides under normal conditions. The prepared samples were characterized by studying their structural, optical and morphological properties using X-Ray Diffraction, Photoluminescence and Scanning Electron Microscopy. The diameter of the prepared nanorods were around 20-30 nm¬. The room temperature Photoluminescence spectra of the ZnO nanorods shows a broad visible emission around 450–530 nm.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

223-226

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z.W. Pan, Z.R. Dai, Z.L. Wang, Science 291 (2001) 1947-1949.

Google Scholar

[2] M. Arnold, P. Avouris, Z. W. Pan, Z. L. Wang, J. Phys. Chem. B 107 (2003) 659-663.

Google Scholar

[3] C. Liu, J. A. Zapien, Y. Yao, X. Meng, C. S. Lee, S. Fan, Y. Lifshitz, and S. T. Lee, Adv. Mater. 15 (2003) 838-841.

DOI: 10.1002/adma.200304430

Google Scholar

[4] X. Duan, Y. Huang, R. Agarwal, C. M. Lieber, Nature 421 (2003) 241-245.

Google Scholar

[5] Z. L. Wang, J. Phys.: Condens. Matter 16 (2004) R829-R858.

Google Scholar

[6] C. Bouvy, W. Marine, R. Sporken, B.L. Su, Chem. Phys. Lett. 428 (2006) 312–316.

Google Scholar

[7] D. Calestani, M. Z. Zha, L. Zanotti, M. Villani, A. Zappettini, Cryst. Eng. Comm., 13 (2011) 1707-1712.

Google Scholar

[8] W. I. Park, D. H. Kim, S.-W. Jung, Gyu-Chul Yi, Appl. Phys. Lett., 80 (2002) 4232-4234.

Google Scholar

[9] T. Singh, D.K. Pandya, R. Singh, J. Nano- Electron. Phys.3 (2011) 146-150.

Google Scholar

[10] zhu jian-yu , zhang jing-xia, zhou hui-fen, qin wen-qing, chai li-yuan, hu yue-hua, Trans.Nonferrous Met. Soc. China 19 (2009)1578-1582.

Google Scholar

[11] Te-Hua Fang, Win-JinChang, WalterWater, Ching-ChinLee, Physica E 42 (2010) 2139-2142.

Google Scholar

[12] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Nihara, Adv. Mater. 11 (1999) 1307-1311.

DOI: 10.1002/(sici)1521-4095(199910)11:15<1307::aid-adma1307>3.0.co;2-h

Google Scholar

[13] Denthaje Krishna Bhat, Nanoscale Res. Lett. 3 (2008) 31-35.

Google Scholar

[14] T. Koida, S. F. Chichibu, A. Uedono, A. Tsukazki, M. Kawasaki, T. Sota, Y. Segawa, H. Koinuma, Appl. Phys. Lett. 82 (2003) 532-535.

DOI: 10.1063/1.1540220

Google Scholar