Advanced Materials Research
Vol. 684
Vol. 684
Advanced Materials Research
Vol. 683
Vol. 683
Advanced Materials Research
Vol. 682
Vol. 682
Advanced Materials Research
Vol. 681
Vol. 681
Advanced Materials Research
Vol. 680
Vol. 680
Advanced Materials Research
Vol. 679
Vol. 679
Advanced Materials Research
Vol. 678
Vol. 678
Advanced Materials Research
Vol. 677
Vol. 677
Advanced Materials Research
Vol. 676
Vol. 676
Advanced Materials Research
Vol. 675
Vol. 675
Advanced Materials Research
Vols. 671-674
Vols. 671-674
Advanced Materials Research
Vol. 670
Vol. 670
Advanced Materials Research
Vol. 669
Vol. 669
Advanced Materials Research Vol. 678
Paper Title Page
Abstract: Cadmium oxide was synthesized using oleic acid as the precursor and capping agent, the main role of oleic acid to cap the formed cadmium oxide and to control the particle size. The formed cadmium oxide nanoparticles were characterized by using FT-IR, XRD,FE-SEM and cyclic voltammetry. The electrochemical detection of pollutants (4-Nitrophenol and 2-Nitrophenol) was carried out by coating the cadmium oxide onto the glassy carbon electrode (GCE) by drop coating method. The electrocatalytic performance of the modified GCE electrode was best with 4-Nitrophenol. In case of 2-Nitrophenol the electrocatalytic performance was not observed but increase in current response indicates the ability of modified electrode to be a useful one for sensing the environmental pollutants.
369
Abstract: Pure TiO2 nanoparticles were synthesized using Titanium (IV)-n-butoxide as Titanium precursor and Sn doping was performed by adding Tin (II) ethylhexanate (Sn precursor) in Titanium precursor by Sol-gel method. The morphology of nanoparticles was examined by XRD and SEM analysis. The XRD analysis shows the formation of mixture phases (anatase and brookite) for pure TiO2. Addition of lower Sn precursor concentration resulted in the formation of Sn doped TiO2 nanoparticles. On increasing the Sn precursor favours the growth of TiO2-SnO2 nanocomposites. It is interesting to observe the fraction of brookite phase in TiO2 decreases by increasing the Sn precursor concentration. The photocatalytic activity test for pure TiO2, pure SnO2, Sn doped TiO2 nanoparticles and TiO2-SnO2 nanocomposites were carried out for Methylene blue (MB) solution. Both Sn doped TiO2 nanoparticles and TiO2-SnO2 nanocomposites show faster photocatalytic degradation than pure TiO2 nanoparticles due to suppression of brookite phase by addition of Sn precursor.
373