Synthesis and Characterization of Fe2+-CTS/CA-CNTs Composite and its Magnetic Properties

Article Preview

Abstract:

A novel biocompatible Fe2+-chitosan (CTS)/citric acid modified carbon nanotube (CA-CNTs) composite (Fe2+-CTS/CA-CNTs) has been successfully synthesized by covalent bonding and crosslinking chemistry, followed by the reduction. The samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-Vis spectrum, X-ray diffraction (XRD), inductively coupled plasma (ICP), thermal gravimetric analysis (TGA), and vibrating sample magnetometer (VSM) techniques. The results show that the CTS has been successfully grafted to the CA-CNTs carrier and Fe2+ ions are absorbed on the CTS by coordination bond mode. It was found that the Fe2+-CTS/CA-CNTs composite shows good magnetic properties with a low ratio of remanence to saturation magnetization and is in a superparamagnetic state at room temperature. It is believed that the Fe2+-CTS/CA-CNTs composite will be potential for application in MRI.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

49-53

Citation:

Online since:

April 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Iijima, Nature 354 (1991) 56-58.

Google Scholar

[2] B.S. Harrison, A. Atala, Biomaterials 28 (2007) 344-353.

Google Scholar

[3] C. Richard, B.T. Doan, J.C. Beloeil, M. Bessodes, E. Toth, D. Scherman, Nano Lett. 8 (2008) 232-236.

Google Scholar

[4] J.S. Ananta, M.L. Matson, A.M. Tang, T. Mandal, S. Lin, K. Wong, S.T. Wong, L.J. Wilson, J. Phys. Chem. C 113 (2009) 19369-19372.

DOI: 10.1021/jp907891n

Google Scholar

[5] O. Vittorio, S.L. Duce, A. Pietrabissa, A. Cuschieri, Nanotechnology 22 (2011).

Google Scholar

[6] H.X. Wu, G. Liu, Y.M. Zhuang, D.M. Wu, H.Q. Zhang, H. Yang, H. Hu, S.P. Yang, Biomaterials 32 (2011) 4867-4876.

Google Scholar

[7] Y.X. Chen, H.C. Gu, Mater. Lett. 67 (2012) 49-51.

Google Scholar

[8] B.T. Doan, J. Seguin, M. Breton, R. Le Beherec, M. Bessodes, J.A. Rodriguez-Manzo, F. Banhart, J.C. Beloeil, D. Scherman, C. Richard, Contrast Media Mol. Imaging. 7 (2012) 153-159.

DOI: 10.1002/cmmi.474

Google Scholar

[9] M.L. Matson, L.J. Wilson, Future Med. Chem. 2 (2010) 491-502.

Google Scholar

[10] A.M. Tang, J.S. Ananta, H. Zhao, B.T. Cisneros, E.Y. Lam, S.T. Wong, L.J. Wilson, K.K. Wong, Contrast Media Mol. Imaging. 6 (2011) 93-99.

DOI: 10.1002/cmmi.410

Google Scholar

[11] B. Sitharaman, K.R. Kissell, K.B. Hartman, L.A. Tran, A. Baikalov, I. Rusakova, Y. Sun, H.A. Khant, S.J. Ludtke, W. Chiu, S. Laus, E. Toth, L. Helm, A.E. Merbach, L.J. Wilson, Chem. Commun. (2005) 3915-3917.

DOI: 10.1039/b504435a

Google Scholar

[12] G. Ke, W.C. Guan, C.Y. Tang, W.J. Guan, F. Deng, Biomacromolecules 8 (2007) 322-326.

Google Scholar

[13] H.M. Li, F.O. Cheng, A.M. Duft, A. Adronov, J. Am. Chem. Soc. 127 (2005) 14518-14524.

Google Scholar

[14] S.H. Qin, D.Q. Oin, W.T. Ford, D.E. Resasco, J.E. Herrera, J. Am. Chem. Soc. 126 (2004) 170-176.

Google Scholar

[15] Y.Y. Xu, C. Gao, H. Kong, D.Y. Yan, Y.Z. Jin, P.C.P. Watts, Macromolecules 37 (2004) 8846-8853.

Google Scholar

[16] Y.H. Gao, K.H. Lee, M. Oshima, S. Motomizu, Anal. Sci. 16 (2000) 1303-1308.

Google Scholar

[17] D.G. Kim, Y.I. Jeong, C. Choi, S.H. Roh, S.K. Kang, M.K. Jang, J.W. Nah, Int. J. Pharm. 319 (2006) 130-138.

Google Scholar

[18] E.M. Kim, H.J. Jeong, S.L. Kim, M.H. Sohn, J.W. Nah, H.S. Bom, I.K. Park, C.S. Cho, Nucl. Med. Biol. 33 (2006) 529-534.

Google Scholar

[19] F.B. Peng, F.S. Pan, H.L. Sun, L.Y. Lu, Z.Y. Jiang, J. Membr. Sci. 300 (2007) 13-19.

Google Scholar

[20] W. Feng, X.D. Bai, Y.Q. Lian, J. Liang, X.G. Wang, K. Yoshino, Carbon 41 (2003) 1551-1557.

Google Scholar

[21] H. Guo, T.V. Sreekumar, T. Liu, M. Minus, S. Kumar, Polymer 46 (2005) 3001-3005.

Google Scholar

[22] T. McNally, P. Potschke, P. Halley, M. Murphy, D. Martin, S.E.J. Bell, G.P. Brennan, D. Bein, P. Lemoine, J.P. Quinn, Polymer 46 (2005) 8222-8232.

DOI: 10.1016/j.polymer.2005.06.094

Google Scholar

[23] Y. Shan, L. Gao, Nanotechnology 16 (2005) 625-630.

Google Scholar

[24] F.X. Wang, X.P. Gao, Z.W. Lu, S.H. Ye, J.Q. Qu, F. Wu, H.T. Yuan, D.Y. Song, J. Alloy. Compd. 370 (2004) 326-330.

Google Scholar

[25] M. Zeisberger, S. Dutz, J. Lehnert, R. Müller, J. Phys.: Conf. Ser. 149 (2009) 012115.

Google Scholar