The Optimization of Carbon Fiber Drawing Process Based on Cooperative Immune Clonal Selection Algorithm

Article Preview

Abstract:

Drawing is an important process during carbon fiber production. How to obtain the fittest drawing ratios distribute scheme is a typical multi-objective optimization problem. We propose a novel cooperative immune clonal selection algorithm (CICSA) to obtain the optimal linear density and breaking elongation ratio. The CICSA features in synergetic evolution, clonal operation and mutation operation. Compared with the immune algorithm and the genetic algorithm, it has the best performance in precision and convergence time.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

304-308

Citation:

Online since:

April 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. E. Bechtel, S. Vohra, K. I. Jacob, Modeling of a two-stage draw process, Polymer. 42 (2001) 2045-(2059).

DOI: 10.1016/s0032-3861(00)00535-8

Google Scholar

[2] Z. Gou, A. J. McHugh, Two-dimensional modeling of dry spinning of polymer fibers, Journal of Non-newtonian Fluid Mechanics. 118 (2004) 121-136.

DOI: 10.1016/j.jnnfm.2004.03.003

Google Scholar

[3] A. Mataram, A. F. Ismail, D. S. A. Mahmod, T. Matsuura, Characterization and mechanical properties of polyacrylonitrile/silica composite fibers prepared via dry-jet wet spinning process, Materials Letters. 64 (2010) 1875-1878.

DOI: 10.1016/j.matlet.2010.05.031

Google Scholar

[4] S. -M. Chuo, M. -H. Wan, L. A. Wang, J. -S. Wang, Multistage modified fiber drawing process and related diameter measuring system, Journal of Lightwave Technology. 27 (2009) 2983-2988.

DOI: 10.1109/jlt.2009.2015059

Google Scholar

[5] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan IEEE Trans. on Evolutionary Computation. 6 (2002) 182-197.

DOI: 10.1109/4235.996017

Google Scholar

[6] C. A. Coello Coello, N. C. Cortes, Solving multi-objective optimization problems using an artificial immune system, Genetic Programming and Evolvable Machines. 6 (2005) 163-190.

DOI: 10.1007/s10710-005-6164-x

Google Scholar

[7] F. Freschi, M. Repetto, VIS: An artificial immune network for multi-objective optimization, Engineering Optimization. 38 (2006) 975-996.

DOI: 10.1080/03052150600880706

Google Scholar

[8] E. G. Okafor, Y. C. Sun, Multi-objective optimization of a series-parallel system using GPSIA, Reliability Engineering & System Safety. 103 (2012) , 61-71.

DOI: 10.1016/j.ress.2012.03.014

Google Scholar