[1]
J.J. Liau, C.K. Cheng, C.H. Huang, et al. The effect of malalignment on stresses in polyethylene component of total knee prostheses-a finite element analysis, J. Clinical Biomechanics. 17 (2002) 140-146.
DOI: 10.1016/s0268-0033(01)00109-7
Google Scholar
[2]
D.D. D'Lima, P.C. Chen, M.A. Kester, et al. Impact of patellofemoral design on patellofemoral forces and polyethylene stresses , J. The Journal of Bone and Joint Surgery. 85-A (2003) 85-93.
DOI: 10.2106/00004623-200300004-00010
Google Scholar
[3]
J.P. Halloran, A.J. Petrella, P.J. Rullkoetter. Explicit finite element modeling of total knee replacement mechanics , J. Journal of Biomechanics. 38(2) (2005) 323-331.
DOI: 10.1016/j.jbiomech.2004.02.046
Google Scholar
[4]
T.L. Donahue, M.L. Hull, M.M. Rashid, et al. A finite element model of the human knee joint for the study of tibio-femoral contact, J. Journal of Biomechanical Engineering. 124(3) (2002) 273-280.
DOI: 10.1115/1.1470171
Google Scholar
[5]
T. Villa, F. Migliavacca, D. Gastaldi, et al. Contact stresses and fatigue life in a knee prosthesis: comparison between in vitro measurements and computational simulations, J. Journal of Biomechanics. 37 (2004) 45-53.
DOI: 10.1016/s0021-9290(03)00255-0
Google Scholar
[6]
A.R. Hopkins, A.M. New, M. Taylor, et al. Finite element analysis of unicompartmental knee arthroplasty, J. Medical Engineering & Physics. 32 (2010) 14-21.
DOI: 10.1016/j.medengphy.2009.10.002
Google Scholar
[7]
Y.F. Dong, G.H. Hu, L.L. Zhang, et al. Accurate 3D reconstruction of subject-specific knee finite element model to simulate the articular cartilage defects, J. Journal of Shanghai Jiao Tong University. 16(5) (2011) 620-627.
DOI: 10.1007/s12204-011-1199-z
Google Scholar
[8]
E. Peña, B. Calvo, M.A. Martínez, et al. Finite element analysis of the effect of meniscal tears and meniscectomies on human knee biomechanics, J. Clinical Biomechanics. 20(5) (2005) 498-507.
DOI: 10.1016/j.clinbiomech.2005.01.009
Google Scholar
[9]
Y.F. Dong, Y.H. Dong, Q.R. Xu, et al. The effect of varying degrees of radial meniscal tears on the knee contact stresses: A finite element analysis, J. Advanced Materials Researh. 304 (2011) 135-141.
DOI: 10.4028/www.scientific.net/amr.304.135
Google Scholar
[10]
E. Peña, B. Calvo, M.A. Martínez, et al. A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint, J. Journal of Biomechanics. 39 (2006) 1686-1701.
DOI: 10.1016/j.jbiomech.2005.04.030
Google Scholar
[11]
B. Innocenti, E. Truyens, L. Labey, et al. Can medio-lateral baseplate position and load sharing induce asymptomatic local bone resorption of the proximal tibia? A finite element study, J. Journal of Orthopaedic Surgery and Research. 17(4) (2009).
DOI: 10.1186/1749-799x-4-26
Google Scholar
[12]
J.P. Halloran, S.K. Easley, A.J. Petrella, et al. Comparison of deformable and elastic foundation finite element simulations for predicting knee replacement mechanics. Journal of Biomechanical Engineering, J. 127(5) (2005) 813-818.
DOI: 10.1115/1.1992522
Google Scholar
[13]
R. Guillin, J.L. Laporte, P. Sabouret, et al. Polyethylene wear in knee arthroplasty-a new sonographic sign, J. Journal of Ultrasound in Medicine. 27 (2008) 275-279.
DOI: 10.7863/jum.2008.27.2.275
Google Scholar
[14]
O.L. Harrysson, Y.A. Hosni, J.F. Nayfeh. Custom-designed orthopedic implants evaluated using finite element analysis of patient-specific computed tomography data: femoral-component case study, J. BMC Musculoskeletal Disorders. 8 (2007) 91.
DOI: 10.1186/1471-2474-8-91
Google Scholar