[1]
P. Rupnowski, M. Gentz, D. Armentrpout, J. K. Sutter and M. Kumosa: The response of a woven graphite fiber/polyimide composite to aging in nitrogen. Acta Materialia, 53, (2005), 4555-4565.
DOI: 10.1016/j.actamat.2005.06.010
Google Scholar
[2]
P. Rupnowski, M. Gentz, J.K. Sutter and M. Kumosa: Mechanical response of a woven graphite/polyimide composite to in-plane shear dominated loads at room and elevated temperatures. Acta Materialia, 52, (2004), 5603-5613.
DOI: 10.1016/j.actamat.2004.08.019
Google Scholar
[3]
P. Rupnowski, M. Gentz, J. K. Sutter and M. Kumosa: An evaluation of elastic properties and thermal expansion coefficients of medium and high modulus graphite fibers. Composites Part A, 36, (2005-b), 327-338.
DOI: 10.1016/j.compositesa.2004.07.003
Google Scholar
[4]
B. Nedjar, A time dependent model for unidirectional fibre-reinforced composites with viscoelastic matrices. International Journal of Solids and Structures 48, (2011) 2333–2339.
DOI: 10.1016/j.ijsolstr.2011.04.007
Google Scholar
[5]
D. Wilson: Recent advances in polyimide composites. High Performance Polymers 5(2), (1993), 77-95.
Google Scholar
[6]
P.D. Soden, M.J. Hinton, and A. S. Kaddour: Experimental failure stresses and deformations for a range of composite laminates subjected to uniaxial and biaxial loads. Composite Science and Technology, 62, (2002), 1489–514.
DOI: 10.1016/s0266-3538(02)00093-3
Google Scholar
[7]
A.S. Kaddour, M.J. Hinton and P.D. Soden: Behaviour of ±45° glass/epoxy filament wound composite tubes under quasi-static equal biaxial tension–compression loading: experimental results. Composites: Part B, 34, (2003), 689–704.
DOI: 10.1016/s1359-8368(03)00077-5
Google Scholar
[8]
B. Benedikt, M. Lewis, P. Rangaswamy, M. Kumosa, P. Predecki, L. Kumosa and M. Gentz: Residual stress analysis in aged graphite/PMR-15 composites using X-Ray diffraction. Materials Science and Engineering A, 421, (2006), 1-8.
DOI: 10.1016/j.msea.2005.10.006
Google Scholar
[9]
M.A. Biot: Theroy of stress-strain relations in anisotropic viscoelasticity and relaxation phenomena. J. Appl. Phys., 25, (1954), 1385-1391.
DOI: 10.1063/1.1721573
Google Scholar
[10]
F. Jacquemin, S. Fréour and R. Guillén: A Hygroelastic Self-consistent Model for Fiber-reinforced Composites. Journal of Reinforced Plastics and Composites, 24, (2005), 485-502.
DOI: 10.1177/0731684405045014
Google Scholar
[11]
S. Fréour, F. Jacquemin and R. Guillén: On an analytical Self-Consistent model for internal stress prediction in fiber-reinforced composites submitted to hygro-elastic load. Journal of Reinforced Plastics and Composites, 24, (2005), 1365-1377.
DOI: 10.1177/0731684405049887
Google Scholar
[12]
C. Cruz, J. Diani and G. Régnier, Micromechanical modelling of the viscoelastic behaviour of an amorphous poly(ethylene)terephthalate (PET) reinforced by spherical glass beads, Composites Part A: Applied Science and Manufacturing, 40, 6–7, ( 2009), 695-701.
DOI: 10.1016/j.compositesa.2009.02.013
Google Scholar
[13]
R. Hill: The elastic behaviour of a crystalline aggregate. Proceedings of the Physical Society, 65(1952), 349-354.
Google Scholar
[14]
C.T. Herakovitch: Mechanics of Fibrous Composites. John Wiley and Sons Inc., New York, (1998).
Google Scholar
[15]
B. Benedikt, M. Gentz, L. Kumosa, P. Rupnowski, J.K. Sutter, P.K. Predecki, and M. Kumosa: X-ray diffraction experiments on aged graphite fiber/polyimide composites with embedded aluminum inclusions. Composites: Part A, 35, (2004), 667-681.
DOI: 10.1016/j.compositesa.2004.02.008
Google Scholar