Fatigue Behaviour of the Laminates Jute/Epoxy

Article Preview

Abstract:

Work presented is interested in the characterization of the quasistatic mechanical properties and in fatigue of a composite laminated in jute/epoxy. The natural fibres offer promising prospects thanks to their interesting specific properties, because of their low density, but also with their bio deterioration. Several scientific studies highlighted the good mechanical resistance of the vegetable fibre composites reinforced, even after several recycling. Because of the environmental standards which become increasingly severe, one attends the emergence of eco-materials at the base of natural fibres such as flax, bamboo, hemp, sisal, jute. The fatigue tests on elementary vegetable fibres show an increase of about 60% of the rigidity of elementary fibres of hemp subjected to cyclic loadings. In this study, the test-tubes manufactured by the method infusion have sequences of stacking of 0/90° and ± 45° for the shearing and tensile tests. The quasistatic tests reveal a variability of the mechanical properties of about 8%. The tensile fatigue tests were carried out for levels of constraints equivalent to half of the ultimate values of the composite. Once the fatigue tests carried out for well defined values of cycles, a series of static tests of traction type highlights the influence of the number of cycles on the quasi static mechanical behavior of the laminate jute/epoxy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

65-71

Citation:

Online since:

April 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. P. Schmidt, H. M. Beyer, SAE Technical Paper 982195, Dec. (1998).

Google Scholar

[2] C. Baley: Composites 33A, 939–948 (2002).

Google Scholar

[3] H.CH.Spatz, L.Köhler et K.J. Niklas: J. of Exp. Biology, 202, pp.3269-3272 (1999).

Google Scholar

[4] L.Köhler et H.C. Spatz. Planta, 215, pp.33-40 (2002).

Google Scholar

[5] Broutman L. J. , Sahu S. : Composites Materials, ASTM STP, 170-188, (1972).

Google Scholar

[6] Ph. Boisse, B. Zouari, A. Gasser. Composites Science and Technology 65 (2005) 429–436.

Google Scholar

[7] Kawabata S., Niwa M., and Kawai H. J. Textile Inst., 64, 1, 1973, pp.21-46.

Google Scholar

[8] J. Gassan, I. Mildner, and A. K. Bledzki : Mechanics of Comp. Materials, Vol. 35/ 5, 1999.

Google Scholar

[9] K. Chaudhuri, M.A. Chaudhuri Biologia plantarum 40 (3) 373-380 1998.

Google Scholar

[10] HEARLE (J.W.S.). Journal of Applied Polymers Science, 7, pp.1207-1223 (1963).

Google Scholar

[11] R. Rao, N. Balas. And J. Chanda.. App. Poly. Sci. Engg., 26, p.9069 (1981)

Google Scholar

[12] S.K. Garkhail, , R.W.H. Heijenrath, , T. Peijs. Appl. Compos. Mater. 7, 351–372 (2000).

Google Scholar

[13] D. Ray, BK. Sarkar, S. Das, AK. Rana. Compos Sci Technol 2002; 62:911–7.

Google Scholar

[14] LY. Mwaikambo, Ansell MP. Compos Sci Technol 2003; 63:1297–305.

Google Scholar

[15] Khan MA, Mina F, Drzal LT. 3rd int. wood and natural fibre composite symposium, 2000.

Google Scholar

[16] J. Gassan, AK. Bledzki. Polym Composites 1999;20 (4):604–11.

Google Scholar

[17] LA. Pothan, S. Thomas. Compos Sci Technol 2003;63:1231–40.

Google Scholar

[18] PJ Herrera-Franco, A. Valadez-Gonzales. Composites Part A 2004;35:339–45.

Google Scholar

[19] MA Khan, MM Rahman, KS.Akhunzada. Polym Plast Tech Eng 2002;41(4):677–89.

Google Scholar

[20] M Masudul Hassan, Islam MR, Khan MA. J Adhes Sci Technol 2003;17(5):737–50.

Google Scholar

[21] D. Plackett and A. Vázquez. Woodhead Publishers, Cambridge 2004, p.123.

Google Scholar

[22] M. A Khan. ; N. Haque; A. Al-Kafi ; M. N. Alam; M. Z. Abedin ISSN 0360-2559 CODEN PPTEC7. 2006, vol. 45, 4-6, pp.607-613.

Google Scholar

[23] R. G. Raj, B. V. Kokta and C. Daneault. J. of Materials Science, 1990, 25, 1851-1855.

Google Scholar

[24] D. Harper and M. Wolcott. Comp. Part A: Applied Sci. and Manuf. 35, (2004), 385-394.

Google Scholar

[25] I. Aranberri, T. Lampke and A. Bismarck. J. of Colloid and Interf. Sci.2003, 263 (580-589)

Google Scholar

[26] A. Karmarkar, S. Chauhan, M. Modak, M. Chanda. Comp. Part A: (2007), 38 (2), 227-233.

Google Scholar

[27] J. B. Naik; S. Mishra. C. Polymer-Plastics Techno. and engineering 46, 2007, 537 – 540.

Google Scholar

[28] Sy Trek Sean. Technology and engineering (2007), 46(4), 421 – 425.

Google Scholar

[29] T. Keener, R.Stuart, T.Brown. C. Part A: Applied S. and Manuf. (2004), 35 (3), 357-363.

Google Scholar

[30] H. Jiang, D. P. Kamdem. Journal of Vinyl and Additive Technology, (2004), 10 (2), 59-69.

Google Scholar

[31] K. Sabeel Ahmed, S.Viyayarangan. J. of mat. processing technology 207 2008 330-335.

Google Scholar

[32] K. Sabeel A, S.Viyayarangan and C. Rajput. J. of reinforced plastics and comp. In press

Google Scholar

[33] D. Placketta, T. Løgstrup , W. Batsberg, L. Nielsenc. C. Sci. and T. 63 2003 1287–1296.

Google Scholar

[34] Martina Wollerdorfer, Herbert Bader. Industrial Crops and Products 8 (1998) 105–112.

Google Scholar

[35] K. Van de Velde, P. Kiekens, Biopolymers. Polymer Testing 21 (2002) 433–442.

DOI: 10.1016/s0142-9418(01)00107-6

Google Scholar

[36] V. Alvarez, E. Rodriguez, A. Vázquez. J. of Thermal A. and Calori. 85 2006 2, 383–389.

Google Scholar

[37] C. Hong, I. Hwang, N. Kim, D. Park, B. Hwang, C. Nah. J. of Ind. and Engineering Chemistry 14 (2008) 71-76.

Google Scholar