Analysis of Design Parameter Influence on the Dynamic Frequency Response of CFFF Honeycomb Sandwich Plate

Article Preview

Abstract:

In the aerospace domain, sandwich plates represent an efficient structural element, providing a high stiffness/weight ratio characteristic. Moreover, when using this structural element, different design parameters and materials of the core can be adopted in order to obtain desired properties. When the dynamic analysis of the spacecraft structure made up of the honeycomb sandwich plates is performed in MSC Patran/Nastran. In this study a three dimensional finite elements of a clamped-free (CFFF) honeycomb plate under dynamic vibrations loading had been analysed. Geometric parameters of hexagonal plate is specific to absorb vibrations, hence the effect of each parameters is crucial to determine the rigidity of plates under a single-point cyclic loading. The effect of honeycomb core thickness, unit cell size, and the materials contribute to determine the rigidity of honeycomb plate. Therefore, all of the analysis results can accommodate bases for structural design and optimum design of the spacecraft structure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

57-64

Citation:

Online since:

April 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E.M. Kerwin, Damping of flexural waves by a constrained viscoelastic layer, Journal of the Acoustical Society of America 31 (7) 952-962; 1959.

DOI: 10.1121/1.1907821

Google Scholar

[2] Petras A, Sutcliffe MPF. Failure mode maps for honeycomb sandwich panels. Compos. Struct;; 44: 237–52; 1999.

DOI: 10.1016/s0263-8223(98)00123-8

Google Scholar

[3] A. Boudjemai, M. Bekhti, , M.H. Bouanane, A.M. Si Mohammed, G. Cooper and G. Richardson, Small satellite Computer-Aided Design and Manufacturing, pp.181-188, SP-581, August 2005, Proceedings of the European conference on Spacecraft Structures, Materials & Mechanical Testing, 10-12 May 2005, ISSN: 1609-042X.

Google Scholar

[4] A. Boudjemai, M.H. Bouanane and, M.A. Si Mohammed, Structural Modelling and Small Satellite Optimisation, page 51, Second International Congress Design and Modelling of Mechanical Systems, CMSM'07, proceeding, 12-21 march 2007, Monastir Tunisia.

Google Scholar

[5] A. Boudjemai, M.H. Bouanane, L. Merad and M.A. Si Mohammed, Small Satellite Structural Optimisation Using Genetic Algorithm Approach, 3rd International Conference on Recent Advances in Space Technologies, RAST '07, pp.398-406, Istanbul, Turkey, ISBN: 1-4244-1057-6, © IEEE 2007.

DOI: 10.1109/rast.2007.4284021

Google Scholar

[6] A. Boudjemai, R. Amri, A. Mankour, H. Salem, M. H. Bouanane, D. Boutchicha, Modal Analysis and Testing of Hexagonal Honeycomb Plates Used for Satellite Structural Design, [Quick Edit] Materials & Design (September 2011) doi:10.1016.

DOI: 10.1016/j.matdes.2011.09.012

Google Scholar

[7] T. SAITO, R. D. PARBERY, S. OKUND and S. KAWANI. Parameter identification for aluminium honeycomb sandwich panels based on orthotropic Timoshenko beam theory. Journal of Sound and vibration 208, 271}287; 1997.

DOI: 10.1006/jsvi.1997.1189

Google Scholar

[8] C.C.CHAO and Y. C. CHERN. Comparison of natural frequencies of laminates by 3-D theory. Journal of Sound and vibration. 230, 985}1007; 2000.

DOI: 10.1006/jsvi.1999.2453

Google Scholar

[9] G. SHI and K. Y. LAM Journal of Sound and vibration. Finite element vibration analysis of composite beams based on higher-order beam theory; 219, 707}721;1999.

DOI: 10.1006/jsvi.1998.1903

Google Scholar

[10] P. R. CUNNINGHAM, R. G.WHITE and G. S. AGLIETTI Journal of Sound and vibration. The effects of various design parameters on the free vibration of doubly curved composite sandwich beams; 230, 617} 648; 2000.

DOI: 10.1006/jsvi.1999.2632

Google Scholar

[11] K. M. LIEW, L. JIANG, M. K. LIM and S. C. LOW; Computers and Structures. Numerical evaluation of frequency responses for delaminated honeycomb structures; 55, 191}203; 1995.

DOI: 10.1016/0045-7949(94)00461-b

Google Scholar

[12] Moreira RAS, Dias Rodriguez J. Sandwich damping treatments with multi-layer and multi-material viscoelastic cores. In: Mota Soares CA, Holnicki-Szulc J, Suleman A, Mota Soares CM, editors. Proceedings of the II ECCOMAS – smart structures and materials, paper no. E090 MOD, Lisbon, Portugal, 18–21 July; 2005.

DOI: 10.1016/j.compstruc.2007.01.029

Google Scholar

[13] Scipio L. Albert. Structure Design concepts", Washington D. C.: NASA SP-5039, 1967.

Google Scholar

[14] DiTaranto, R.A., "Theory of Vibratory Beading for Elastic and Viscoelastic Layered Finite-Length Beams," Journal of Applied Mechanics, 32, 881-886; 1965.

DOI: 10.1115/1.3627330

Google Scholar

[15] Mead, D.J. and Markus, S., "The Forced Vibration of a Three-layer, Damped Sandwich Beam with Arbitrary Boundary Conditions, Journal of Sound and Vibration, 10 (2), 99-112; 1970.

DOI: 10.1016/0022-460x(69)90193-x

Google Scholar

[16] Rao, D.K., "Frequency and Loss Factors of Sandwich Beams under Various Boundary Conditions", Journal of Mechanical Engineering Science, 20(5), 271-282; 1978.

DOI: 10.1243/jmes_jour_1978_020_047_02

Google Scholar

[17] Nilsson, E. and Nilsson, A.C., "Prediction and Measurement of Some Dynamic Properties of Sandwich Structures with Honeycomb and Foam Cores", Journal of Sound and Vibration, 251(3), 409-430; 2002.

DOI: 10.1006/jsvi.2001.4007

Google Scholar

[18] Sitton, G., "MSC/NASTRAN Basic Dynamic Analysis User's Guide", The McNeal-Schwendler Corporation, USA; 1997.

Google Scholar

[19] Chung, TR. Materials for Vibration Damping, Including Metals, Polymers, Cement and Their Composites. Journal of Material Science, Vol. 36, No. 24, pp.5733-5737; 2001.

Google Scholar

[20] Allen, H. G, Analysis and Design of Structural Sandwich Panels, Pergamon Press, Oxford, 1969.

Google Scholar