SEM-EBSD Observations of Crack Initiation and Propagation due to Orientation Changes during Forming in Mild Steel

Article Preview

Abstract:

The change in crystallographic orientation distribution during deformation by deep drawing in mild steel has been investigated in order to understand their role in initiation and propagation of crack. The results show that the change of grain orientation from the initial recrystallization texture component of {111}<112> to deformation orientation {111}<110> incites the initiation and propagation of transgranular cracking in the region of {111}<112> small grains. Moreover, the transgranular misorientation and local orientation are analyzed in detail to discuss the change from {111}<112> to {111}<110>. The SEM-EBSD technique was used to reveal that change of orientationm, XRD was performed for the characterization of the global evolution of texture for deformed samples.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

25-32

Citation:

Online since:

April 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Verbeken, L. Kestens, and J. J. Jonas, "Microtextural study of orientation change during nucleation and growth in a coldrolled ULC steel," Scripta Materialia, vol. 48, no.10, p.1457–1462, 2003.

DOI: 10.1016/s1359-6462(03)00078-2

Google Scholar

[2] D. Raabe, Z. Zhao , S.-J. Park , F. Roters. Theory of orientation gradients in plastically strained crystals. Acta Materialia 50, p.421–440, 2002.

DOI: 10.1016/s1359-6454(01)00323-8

Google Scholar

[3] R. Ayer, R.R. Mueller, T. Neeraj, Electron backscattered diffraction study of cleavage fracture in pure iron, Materials Science and Engineering A 417, p.243–248, (2006)

DOI: 10.1016/j.msea.2005.10.066

Google Scholar

[4] V. Randle, O. Engler, Texture Analysis: Microstructure, Microtexture and Orientation Mapping, Gordon and Breach, 2000.

Google Scholar

[5] D. Jorge-badiola, A.Iza-Mendia, I. Gutiérrez, Study by EBSD of the development of the substructure in a hot deformed 304 Stainless Steel. Materials Science and Engineering A 394, p.445–454, 2005.

DOI: 10.1016/j.msea.2004.11.049

Google Scholar

[6] T. Hoc, C. Rey, effect of the free surface on strain localization in mild steel, Scripta Met. 42 pp.1053-1058, 2000.

DOI: 10.1016/s1359-6462(00)00337-7

Google Scholar

[7] T. Hoc, C. Rey, P. Viaris de lesegno, Mesostructure of the localisation in prestrained mild steel, Scripta met. 42, pp.749-754, 2000.

DOI: 10.1016/s1359-6462(99)00425-x

Google Scholar

[8] D.Kuhlman-Wilsdrof, Regular deformation bands and the LEDS hypothesis, Acta Mater. 47(6), pp.1697-1712, 1999.

DOI: 10.1016/s1359-6454(98)00413-3

Google Scholar

[9] C. lineau, C. Rey, P. Viaris de lesegno, Experimental Analysis models predictions of steel grains. Comparison with polycristal models predictions, Master. Sci. Engrg. A 234-236, pp.853-856, 1997.

DOI: 10.1016/s0921-5093(97)00336-5

Google Scholar

[10] A.A. Gazder, F. Dalla Torre, C.F. Gu, C.H.J. Davies, E.V. Pereloma. Microstructure and texture evolution of bcc and fcc metals subjected to equal channel angular extrusion. Materials Science and Engineering A 415 p.126–139, 2006.

DOI: 10.1016/j.msea.2005.09.065

Google Scholar

[11] A.J. Schwarz, M. Kumar, B.L. Adams, Electron Backscatter Diffraction in Materials Science, Kluwer Academic/Plenum Publishers, New York 2000.

Google Scholar

[12] W.W. Bose Filho, A.L.M. Carvalho, P. Bowen, Micromechanisms of cleavage fracture initiation from inclusions in ferritic welds. Part I. Quantification of local fracture behaviour observed in notched test pieces, Materials Science and Engineering A 460–461 p.436–452, 2007.

DOI: 10.1016/j.msea.2007.01.115

Google Scholar

[13] D. Raabe , M. Sachtleber , Z. Zhao, F. Rotters, S. Zaefferer. Micromechanical and macromechanical effects in grain scale polycrystals plasticity experimentation and simulation. Acta materialia 2001; 49: 3433–3441. Acta mater. 49 p.3433–3441, 2001.

DOI: 10.1016/s1359-6454(01)00242-7

Google Scholar

[14] Y.H. Zhu, W.B. Lee, S.To. Use of EBSD to study stress induced microstructural changes in Zn-Al based alloy. Materials science and Engineering A 348 p.6–14, 2003.

DOI: 10.1016/s0921-5093(02)00252-6

Google Scholar

[15] S.Q. Cao, J.X. Zhang, J.S.Wu, L. Wang, J.G. Chen, Microstructure, grain boundary character distribution and secondary working embrittlement of high strength IF steels. Materials science and Engineering A 392 p.203–208, 2005.

DOI: 10.1016/j.msea.2004.09.024

Google Scholar

[16] B. Eghbali, A. Abdollah-Zadeh, H. Beladi, P.D. Hodgson, Characterization on ferrite microstructure evolution during large strain warm torsion testing of plain low carbon steel. Materials Science and Engineering A 435–436, p.499–503, 2006.

DOI: 10.1016/j.msea.2006.07.026

Google Scholar

[17] MOVERARE Johan J.; JOHANSSON Sten ; REED Roger C. Deformation and damage mechanisms during thermal-mechanical fatigue of a single-crystal super alloy. Acta materialia, vol. 57, no7, p.2266–2276,  2009.

DOI: 10.1016/j.actamat.2009.01.027

Google Scholar

[18] R.A. Jago, N. Hansen, Grain size effects in the deformation of polycrystalline iron, Acta Metall. 34 (1986) 1711–1720.

DOI: 10.1016/0001-6160(86)90118-5

Google Scholar

[19] R.O. Ritchie, A.W. Thompson, on macroscopic and microscopic analyses for crack initiation and crack growth toughness in ductile alloys, Metall. Trans. A 16 (1985) 233–248.

DOI: 10.1007/bf02815305

Google Scholar

[20] A.W. Thompson, Effect of grain size on work hardening in nickel, Acta Metall. 25 (1977) 83–86.

DOI: 10.1016/0001-6160(77)90249-8

Google Scholar

[21] M. Mineur, P. Villechaise, J. Mendez, Influence of the crystalline texture on the fatigue behavior of a 316L austenitic stainless steel. Mater. Sci. Eng. A 286, p.257–268, 2000.

DOI: 10.1016/s0921-5093(00)00804-2

Google Scholar