Notch Fatigue Crack Initiation and Propagation Life under Constant Amplitude Loading through Residual Stress Field

Article Preview

Abstract:

The purpose of this paper is to estimate the number of cycles for fatigue crack initiation in notched plate under constant amplitude loading through tensile residual stress field of Aluminum alloy plate. Residual stress field was generated by plastic deformation using finite element method. Simulation of fatigue behavior was made on AFGROW code. It was shown that the fatigue crack initiation and propagation were affected by level of residual stress filed. In this investigation, the presence of tensile residual stresses reduces considerably the total fatigue life. Loading parameter namely stress ratio was studied. The decreasing in this parameter reduces the fatigue crack growth rate (FCGRs).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

17-24

Citation:

Online since:

April 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Glinka, Residual stress in fatigue and fracture: Theoretical analyses and experiments. In Niku-Lari A., Editor, Advances in Surfaces Treatments, 413-454. Pergamon Press, (1987).

DOI: 10.1016/b978-0-08-034062-3.50029-x

Google Scholar

[2] H. Mughrabi, Fatigue Behavior of Metallic Materials, D. Munz, Ed., DGM-Information sgesellschaftVerlag, Oberursel, 7-38, (1985).

Google Scholar

[3] M. Truchon, Application of low-cycle fatigue test results to crack initiation from notches, low-cycle fatigue and life prediction, In: ASTM STP 770, C. Amzallag, B. N. Leis, and P. Rabbe, (Eds.), American Society for Testing and Materials (1982), p.254.

DOI: 10.1520/stp32432s

Google Scholar

[4] G. Glinka, Engineering Fracture Mechanics, 21(2) (1985), p.245.

Google Scholar

[5] D. F. Socie, Experimental Mechanics, 17 (1977), p.50.

Google Scholar

[6] X. Zheng, Int. J. of Fatigue 23 (2001), p.751.

Google Scholar

[7] Z. Khan, A. Rauf, M. Younas, J. Mat. Engng. Perfor. 6(3) (1977), p.365.

Google Scholar

[8] M. Zheng, E. Niemi, X. Zheng, Theor. Appl. Fract. Mech. 26 (1997), p.23.

Google Scholar

[9] F.J. McMaster, D.J. Smith, International Journal of Fatigue 23, S93–S101, (2001)

Google Scholar

[10] C.A. Rodopoulos, J.H. Choi, E.R. De los Rios, J.R. Yates, Int. J. Fatigue 26 (2004) 747.

Google Scholar

[11] M. Benachour, A. Hadjoui, M. Benguediab and N. Benachour. Stress ratio effect on fatigue behavior of aircraft aluminum alloy 2024 T351. In : MRS Proceedings, 1276, 7 (2010).

DOI: 10.1557/proc-1276-7

Google Scholar

[12] P.J. Withers, H.K.D.H. Bhadeshia, Materials Sciences and Technology 17 (2001).

Google Scholar

[13] C. Makabe, A. Purnowidodo A. A.J. McEvily, Int. J. of fatigue 26 (2004), p.1341.

Google Scholar

[14] R. John, K.V. Jata, K. Sadananda, Int. J. of fatigue 25 (2003), p.939.

Google Scholar

[15] J. Barralis, L. Castex, G. Maeder, Précontraintes et traitements superficiels, Technique de l'Ingénieur, traité matériaux métalliques M1 180.

DOI: 10.51257/a-v2-m1180

Google Scholar

[16] T Fett, Engineering Fracture Mechanics 56 (1997), p.275.

Google Scholar

[17] M. Beghini, L. Bertini, Engineering Fracture Mechanics, 36 (1990), p.379.

Google Scholar

[18] S. Suresh, R.O. Ritchie, Materials Sciences and Engineering. 51 (1981), p.61.

Google Scholar

[19] S. Kamel, Robert C. Wimpory, Michael Hofmann, Kamran M. Nikbin, N.P. O'Dowd, Advanced Materials Research, 89-91 (2010), p.275.

Google Scholar

[20] A.N. Al-Khazraji, F.M. Mohammed, R. A. Al-Taie, Eng. Tech. Journal, 29(3) (2011).

Google Scholar

[21] M. Zheng, J.H. Luo, X.W. Zhao, Z.Q. Bai, R.Wang , Int. J. Pres. Ves. Pip. 82 (2005), p.546.

Google Scholar

[22] J.C. Grosskreutz, C.G Shaw, Critical mechanisms in the development of fatigue cracks in 2024 T4 aluminum, Proc. 2nd Int. Conf. on Fracture, Brighton (1969).

Google Scholar

[23] N. Ranganathan, H. Aldroe, F. Lacroix, F. Chalon, R. Leroy, A. Tougui, Int. J. Fatigue 33 (2011), p.492.

DOI: 10.1016/j.ijfatigue.2010.09.007

Google Scholar

[24] E. Tuegel, Strain-life crack initiation life software, provided by analytical processes and engineered solutions, (AP/ES) Inc., 1996.

Google Scholar

[25] J.A Harter, AFGROW users guide and technical manual: AFGROW for Windows 2K/XP, Version 4.0011.14, Air Force Research Laboratory, 2006.

DOI: 10.21236/ada370431

Google Scholar

[26] H. Neuber, Trans. ASME, Journal of Applied Mechanics (Dec 1960), p.544.

Google Scholar

[27] L.F. Coffin, Transactions of the ASME, 76 (1954), p.931.

Google Scholar

[28] J.C. Newman, International Journal of Fracture, 24(3), (1984), p.131.

Google Scholar