Thermomechanical Fatigue Characterization of Three Dimensional Compact Tension Specimens Made from Steel

Article Preview

Abstract:

When coupling with temperature is incorporated, the problem of fatigue is formulated within the general framework of thermomechanical fatigue. Considering the special case of steel structures, in addition to variations of material and fatigue parameters with temperature, fatigue damage depends on the phasing existing between the concomitant strain and temperature cycles. In this work, the extended finite element method is used to simulate crack growth under thermomechanical fatigue coupling. Assuming large cycle duration for which temperature variations can be considered to be uniform, this approach is applied in the context of linear elastic fracture mechanics for the particular case of the three dimensional Compact-Tension specimen. The objective is to attempt understanding more closely crack growth mechanism under thermomechanical loading. Characterization of fatigue was assessed as function of phasing and strain restraint.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

41-48

Citation:

Online since:

April 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G.S. Campbell and R. Lahey: International Journal of Fatigue, Vol. 6 (1984), p.25.

Google Scholar

[2] W.Z. Zhuang and N.S. Swansson: Thermo-mechanical fatigue life prediction: a critical review. Airframes and engines division/aeronautical and maritime research laboratory, DSTO-TR-0609, (1998).

Google Scholar

[3] G. Thomas, J. Bressers and D. Raynor: Low-Cycle Fatigue and Life Prediction Methods. High Temperature Alloys for Gas Turbines, edited by R. Brunetaud, D. Riedel Publishing Co., Netherlands, (1982), p.291.

DOI: 10.1007/978-94-009-7907-9_12

Google Scholar

[4] R. Bill, M. Verrilli and G.R. Halford: A Preliminary study of the Thermo-Mechanical Fatigue of Polycrystalline MAR M-200, NASA TP-2280, AVSCOM TR 83-C-6, (1984).

Google Scholar

[5] R. Neu and H. Sehitoglu: Met. Trans. A, 20A (1989), p.1755.

Google Scholar

[6] S.P. Brookes: Thermo-mechanical fatigue behaviour of the near- γ -titanium aluminide alloy TNB-V5 under uniaxial and multiaxial loading (BAM Bundesanstalt für Materialforschung und Prüfung, Germany, 2009).

Google Scholar

[7] G.R. Halford, S. Manson, B. Prillhofer, G. Winter and W. Eichlseder: Life prediction of thermal-mechanical fatigue using strain range partitioning, thermal fatigue of materials and components. ASTM STP 612, (1976), p.239.

DOI: 10.1520/stp27895s

Google Scholar

[8] N. Moёs, J.E. Dolbow and T. Belytschko: International Journal for Numerical Methods in Engineering, Vol.46 (1999), p.131.

Google Scholar

[9] B.L. Karihaloo and Q.Z. Xiao: Comp & Struct, Vol. 81 (2003), p.119.

Google Scholar

[10] Y. Abdelaziz and A. Hamouine: Comp & Struct, Vol. 86 (2008), p.1141.

Google Scholar

[11] S. Mohammadi: Extended finite element method. Oxford: Blackwell Publishing (2008).

Google Scholar

[12] Hibbitt, Karlsson & Sorensen, Inc: ABAQUS/Standard User's Manual, v. 6.5 (Pawtucket, Rhode Island 2004).

Google Scholar

[13] J. Shi, D. Chopp, J. Lua, N. Sukumar and T. Belytschko: Engineering Fracture Mechanics, Vol. 77 (2010), p.2840.

DOI: 10.1016/j.engfracmech.2010.06.009

Google Scholar

[14] G.A. Swanson, I. Linask, D.M. Nissley, P.P. Norris, T.G. Meyer and K.P. Walker: Life prediction and constitutive models for engine hot section, Anisotropic materials program. NASA contractor report 174952 (1986).

Google Scholar

[15] T. Gocmez, A. Awarke and S. Pishinger: International Journal of Fatigue, Vol. 32 (2010), p.769.

Google Scholar

[16] J. Lemaitre and J.L. Chaboche: Mechanics of solid materials, edited by Cambridge University Press, Cambridge, 1990.

Google Scholar

[17] P.C. Paris, M.P. Gomez and W.E: Anderson: The Trend of Engineering, Vol. 13 (1961), p.9.

Google Scholar

[18] H. Sehitoglu: Thermo-Mechanical Fatigue Life Prediction Methods. Advances in Fatigue Lifetime Predictive Techniques, ASTM STP 1122, (1992), p.47.

DOI: 10.1520/stp24152s

Google Scholar

[19] H.J. Christ, A. Jung, H.J. Maier and R. Teteruk: Sadhana, Vol. 28 (2003), p.147.

Google Scholar

[20] R.P. Skelton: Material Science Technology, Vol. 9 (1993), p.1001.

Google Scholar

[21] A. De Andres, J. Perez and M. Ortiz : International Journal of Solids and Structures, Vol. 36 (1999), p.2231.

Google Scholar

[22] G.Q. Sun and D.G. Shang: Materials and Design, Vol. 31 (2010), p.126.

Google Scholar

[23] I. Babuska and J.M. Melenk: International Journal for Numerical Methods in Engineering, Vol. 40 (1998), p.727.

Google Scholar

[24] T. Belytschko, R. Gracie and G. Ventura: Modeling and Simulation in Materials Science and Engineering, Vol. 17 (2009), p.1.

Google Scholar

[25] N. Sukumar, J.E. Dolbow, A. Devan, J. Yvonnet, F. Chinesta, D. Ryckelynck, P. Lorong, I.Alfaro, M.A. Martίnez, E. Cueto and M. Doblarès: International Journal of Forming Processes, Vol.8 (2005), p.409.

DOI: 10.3166/ijfp.8.409-427

Google Scholar

[26] N. Sukumar, N. Moёs, B. Moran and T. Belytschko: International Journal for Numerical Methods in Engineering, Vol. 48 (2000), p.1549.

Google Scholar

[27] A. Zamani and M.R. Eslami: International Journal of Solids and Structures, Vol. 47 (2010), p.1392.

Google Scholar

[28] F. Erdogan and G.C. Sih: Journal of Basic Engineering, Vol. 85 (1963), p.519.

Google Scholar