Synthesis and Electrochromic Properties of Crystalline 3D Urchin-Like Nanostructures

Article Preview

Abstract:

Novel 3D (three-dimensional) urchin-like WO2.72 nanostructures were prepared by a template-free hydrothermal synthetic route using W(CO)6 and ethyl alcohol reagents. The detailed morphology and crystallinity were dependant on the synthesis temperature and synthesis time. The potential use of WO2.72 nanourchins as a cathode electrode for electrochromic devices was assessed. The WO2.72 electrochromic films exhibited a rapid switching response time (coloring time ~5 s, bleaching time ~1.6 s), outstanding high coloration efficiency (~116 cm2/C), and durability in an acidic electrolyte. This performance was attributed to the high diffusion coefficient [~6.43×10-9 cm2/s (in the intercalation)] of the urchin-likeWO2.72 with a high surface area to volume ratio and high crystallinity

You might also be interested in these eBooks

Info:

Periodical:

Pages:

307-313

Citation:

Online since:

April 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P.M.S. Monk, R.J. Mortimer, R.J. Rosseinsk: Electrochromism and Electrochromic Devices (Cambridge: Cambridge University Press 2007).

Google Scholar

[2] C.G. Granqvist: Handbook of In organic Electrochromic Materials (Elsevier, Amstrerdam 1995).

Google Scholar

[3] J. Scarminio, A. Urbano, B. Gardes: Mater. Chem. Phys. Vol. 61 (1999), p.143.

Google Scholar

[4] M. Deepa, A.K. Srivastava, S. Singh, S.A. Agnihotry: J. Mater. Res. Vol. 19 (2004), p.2576.

Google Scholar

[5] S.H. Lee, R. Deshpande, P.A. Parilla, K.M. Jones, B. To, H. Mahan: Adv. Mater. Vol. 18 (2006) , p.763.

Google Scholar

[6] S.Y. Park, J.M. Lee, C. Noh, S.U. Son: J. Mater. Chem. Vol. 19 (2009), p.7959.

Google Scholar

[7] R.S. Crandall and B.W. Faughnan: Appl. Phys. Lett. Vol. 26 (1975), p.120.

Google Scholar

[8] G. Gu, B. Zheng, W.Q. Han, S. Roth, J. Liu: Nano Lett. Vol. 2 (2002), p.849.

Google Scholar

[9] Y.B. Li, Y. Bando, D. Golberg: Adv. Mater. Vol. 15 (2003), p.1294.

Google Scholar

[10] B.B. Lakshmi, P.K. Dorhout, C.R. Martin: Chem. Mater. Vol. 9(1997), p.857.

Google Scholar

[11] K. Lee, W.S. Seo, J.T. Park: J. Am. Chem. Soc. Vol. 125 (2003), p.3408.

Google Scholar

[12] X.W. Lou, H.C. Zeng: Inorg. Chem. Vol. 42 (2003), p.6169.

Google Scholar

[13] Z.J. Gu, T.Y. Zhai, B.F. Gao, X.H. Sheng, Y.B. Wang, H.B. Fu, Y. Ma, J.N. Yao: J. Phys. Chem. B. Vol. 110 (2006), p.23829.

Google Scholar

[14] B. Liu, H.C. Zeng: J. Am. Chem. Soc. Vol. 126 (2004), p.16744.

Google Scholar

[15] F. Amano, K. Nogami, R. Abe, B. Ohtani: J. Phys. Chem. C. Vol. 112 (2008), p.9320.

Google Scholar

[16] Y. Ding, S.H. Yu, C. Liu, Z.A. Zang: Chem. Eur. J. Vol. 13 (2007), p.746.

Google Scholar

[17] B. Liu, S.H. Yu, L.J. Li, Q. Zhang, F. Zhang, K. Jiang: Angew Chem. Int. Ed. Vol. 43 (2004), p.4745.

Google Scholar

[18] Y. Zhao, Y. Xie, X. Zhu, S. Yan, S.X. Wang: Chem. Eur. J. Vol. 14 (2008), p.1.

Google Scholar

[19] W.L. Xiong, W. Yong, Y. Chongli, Y.L. Jim, A.A. Lyden: Adv. Mater. Vol. 18 (2006), p.2325.

Google Scholar

[20] B. Liu, H.C. Zeng: Small Vol. 1 (2005), p.566.

Google Scholar

[21] B.X. Li, G.X. Rong, Y. Xie, L.F. Huang, C.Q. Feng: Inorg. Chem. Vol. 45 (2006), p.6404.

Google Scholar

[22] J.M. Wang, E. Khoo, P.S. Lee, J. Ma: J. Phys. Chem. Vol. 113 (2009), p.9655.

Google Scholar

[23] K. Senthil, K. Yong: Nanotechnology Vol. 18 (2007), p.395604.

Google Scholar

[24] C. Zhang, A. Boudiba, C. Navio, C. Bittencourt, M.G. Olivier, R. Snyders, M. Debliquy: Int. J. Hydrogen Energy Vol. 34 (2011), p.1107.

DOI: 10.1016/j.ijhydene.2010.10.011

Google Scholar