Solvothermal Synthesis and Detailed Analysis of Hydroxyapatite Nanostructure

Article Preview

Abstract:

Hydroxyapatite (HA) nanostructures may be an advanced candidate in biomedical applications for an apatite substitute of bone and teeth than other form of HA. In contrast, well-defined size and shape control in synthesizing HA nanostructures is always difficult. Solvothermal synthesis method was adopted to prepare highly ordered hydroxyapatite nanostructures. The morphological analysis by FESEM confirms that the preparation conditions greatly influences the morphological characterization. X-ray Diffraction (XRD) measurements indicate the formation of crystalline hexagonal hydroxyapatite. The crystillinity of HA decreased with increasing ethyline glycol.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

322-325

Citation:

Online since:

April 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] X. Wang, X. Ma, W. Ling, Y. Zheng, Adv. Sci. Lett. 4 (2011) 1509.

Google Scholar

[2] B.R. Winton, M, Ionescu, C. Lukey, M.R. Wilson, I. P. Nevirkovets, S.X. Dou, Adv. Sci. Lett. 4 (2011) 431.

Google Scholar

[3] A. Shukla, M.K. Patra, M.  Mathew, S. Songara, V.K. Singh, G.S. Gowd, S.R. Vadera, N.  Kumar, Adv. Sci. Lett. 3 (2010) 161.

DOI: 10.1166/asl.2010.1103

Google Scholar

[4] M. Braddock, P. Houston, C. Campbell and P. Ashcroft, News Physiol Sci 16 (2001), p.208.

Google Scholar

[5] J.Y. Rho, L. Kuhn-Spearing, and P. Zioupos, Med Eng Phys 20 (1998), p.92.

Google Scholar

[6] C. Du, F.Z. Cui, X.D. Zhu and K. de Groot, J Biomed Mater Res 44 (1999), p.407.

Google Scholar

[7] R.Z. LeGeros Clin Orthop Relat Res 395 (2002), p.81.

Google Scholar

[8] A. J. Nathanael, D. Mangalaraj, P.C. Chen and N. Ponpandian, J. Nanopart. Res. 13 (2011) 1841.

Google Scholar

[9] A. J. Nathanael, S. I. Hong, D. Mangalaraj, N. Ponpandian, P. C. Chen, Cryst. Growth Des. 12 (2012) 3565–3574.

Google Scholar

[10] R. Narayanan, S.K. Seshadri, T.Y. Kwon and K.H. Kim, Scr. Mater. 56 (2007) 229.

Google Scholar

[11] D. Walsh, S. Mann, Chem Mater. 8 (1996) 1944–(1953).

Google Scholar

[12] S. Sarda, M. Heughebaert, A. Lebugle, Chem Mater 11(1999) 2722– 2727.

Google Scholar

[13] T. Hirai, M. Hodono, I. Komasawa, Langmuir 16(2000) 955– 960.

Google Scholar

[14] Z.Y. Yuan, J.Q. Liu, L.M. Peng, Langmuir 18(2002) 2450–2452.

Google Scholar

[15] J.C. Elliott , Recent studies of apatites and other calcium orthophospates. In: Bres E, Hardouin P (eds) Calcium phosphate materials, fundamentals. Sauramps Medical, Monpellier, (1998) p.25.

Google Scholar

[16] F. Chen, Y.J. Zhu, K.W. Wang and K.L. Zhao, Cryst. Eng. Comm. 13 (2011) 1858.

Google Scholar