Ammonia Gas Sensors Based on In Situ and Drop-Coated Polyaniline Nanostructures

Article Preview

Abstract:

Polyaniline (PANI) nanostructures are successfully prepared and deposited by in-situ and drop-coating on glass substrates without using any template. By changing synthesis and deposition method, a new morphology of nanostructures, “the cauliflower-like structure”, is developed. These nanostructures were then tested as optical ammonia gas sensors by measuring the optical absorbance variations at 632 nm at different NH3 concentrations. The results show a strong dependence of the morphology on the deposition method. The in-situ one leads to better performances compared to the drop coated one. Protonation /deprotonation is the mechanism of interaction between NH3 molecules and PANI nanostructures.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

134-138

Citation:

Online since:

April 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. Li, Y. Lee and L.H. Ong, J. Appl. Etectrochem., 2 (1992) 512.

Google Scholar

[2] F, Trinidad, M.C. Montemayer and E. Fatas, J. Eleetrochem. Soc. 138 (1991) 3186.

Google Scholar

[3] C.G.Wu, T. Bein, , Science 264 (1994) 1757–1759.

Google Scholar

[4] G.L. Hornyak, K.N. Phani, D.L. Kunkel, V.P. Menon, C.R. Martin, Nanostruct. Mater. 6 (1995) 839–842.

Google Scholar

[5] L. Yu, J.I. Lee, K.W. Shin, C.E. Park, R. Holze, J. Appl. Polym. Sci. 88 (2003) 1550.

Google Scholar

[6] J. M. Liu; S. C. Yang, Chem. Commun. (1991) 1529.

Google Scholar

[7] J. Huang, S. Virji, B.H. Weiller, R.B. Kaner, J. Am. Chem. Soc. 125 (2003) 314.

Google Scholar

[8] J. Huang, R.B. Kaner, Angew. Chem. Int. Ed. 43 (2004) 5817

Google Scholar

[9] H. Kebiche, D. Debarnot, A. Merzouki, F. Poncin-Epaillard, N. Haddaoui, Analytica Chimica Acta 737 (2012) 64–71

DOI: 10.1016/j.aca.2012.06.003

Google Scholar

[10] J. E. Albuquerque, L. H. C. Mattoso, D. T. Balogh, R. M. Faria, J. G. Masters, A. G. MacDiarmid, Synthetic Metals, 113, (2000) 19

DOI: 10.1016/s0379-6779(99)00299-4

Google Scholar

[11] X. Li, X. Li, G. Wang, Applied Surface Science 249 (2005) 266

Google Scholar

[12] P.L.B. Araujo, E.S. Araujo, R.F.S. Santos, A.P.L. Pacheco, Microelectronics Journal 36 (2005) 1055

Google Scholar

[13] S.E. Moulton, P.C. Innis, L.A.P. Kane-Maguire, O. Ngamna, G.G. Wallace, Current Applied Physics 4 (2004) 402

DOI: 10.1016/j.cap.2003.11.059

Google Scholar

[14] D. Nicolas-Debarnot, F. Poncin-Epaillard, Analytica Chimica Acta 475 (2003) 1

DOI: 10.1016/s0003-2670(02)01229-1

Google Scholar

[15] I. Sedenkova, M. Trchova, J. Stejskal, Polym. Degrad. Stab. 93 (2008) 2147

Google Scholar

[16] J. Tang, X. Jing, B. Wang, F. Wang, Synth. Met. 24 (1988) 231

Google Scholar

[17] M. Trchovà, J. Stejskal, J. Prokes, Synth. Met. 101 (1999) 840

Google Scholar

[18] N.B. Colthup, L.H. Daly, S.E. Wiberley, Introduction to Infrared and Raman Spectroscopy, third ed., Academic Press, INC, Boston, 1990.

Google Scholar