[1]
M. Peuster, P. Wohlsein, M. Brugmann, M. Ehlerding, K. Seidler, C. Fink, H. Brauer, A. Fischer, G. Hausdorf, A novel approach to temporary stenting: Degradable cardiovascular stents produced from corrodible metal-results 6-18 months after implantation into New Zealand white rabbits, Heart 86 (2001) 563-569.
DOI: 10.1136/heart.86.5.563
Google Scholar
[2]
S.N. Kurpad, J.A. Goldstein, A.R. Cohen, Bioresorbable Fixation for Congenital Pediatric Craniofacial Surgery: A 2-Year Follow-Up, Pediatr. Neurosurg. 33 (2000) 306-310.
DOI: 10.1159/000055976
Google Scholar
[3]
B.L Eppley, A.M. Sadove, R.J. Havlik, Resorbable plate fixation in pediatric craniofacial surgery, Plast. Reconstruc. Surg. 100 (1997) 1-7.
DOI: 10.1097/00006534-199707000-00001
Google Scholar
[4]
H. Hermawan, Biodegradable Metals: From Concept to Applications, Springer, Heidelberg, 2012.
Google Scholar
[5]
F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, C.J. Wirth, In vivo corrosion of four magnesium alloys and the associated bone response, Biomaterials 26 (2005) 3557-3563.
DOI: 10.1016/j.biomaterials.2004.09.049
Google Scholar
[6]
X.N. Gu, Y.F. Zheng, A review on magnesium alloys as biodegradable materials, Front. Mater. Sci. China 4 (2010) 111-115.
Google Scholar
[7]
H. Hermawan, D. Dubé, D. Mantovani, Degradable metallic biomaterials: Design and development of Fe-Mn alloys for stents, J. Biomed. Mater. Res. 93A (2010) 1-11.
DOI: 10.1002/jbm.a.32224
Google Scholar
[8]
M. Schinhammer, A.C. Hänzi, J.F. Löffler, P.J. Uggowitzer, Design strategy for biodegradable Fe-based alloys for medical applications, Acta Biomater. 6 (2010) 1705-1713.
DOI: 10.1016/j.actbio.2009.07.039
Google Scholar
[9]
H. Hermawan, H. Alamdari, D. Mantovani, D. Dubé, Iron-manganese: New class of metallic degradable biomaterials prepared by powder metallurgy, Powder Metall. 51 (2008) 38-45.
DOI: 10.1179/174329008x284868
Google Scholar
[10]
M. Moravej, F. Prima, M. Fiset, D. Mantovani, Electroformed iron as new biomaterial for degradable stents: Development process and structure-properties relationship, Acta Biomater. 6 (2010) 1726-1735.
DOI: 10.1016/j.actbio.2010.01.010
Google Scholar
[11]
L.S. Nair, C.T. Laurencin, Biodegradable polymers as biomaterials, Prog. Polym. Sci. 32 (2007) 762-798.
Google Scholar
[12]
S.L. Ishaug-Riley, G.M. Crane, A. Gurlek, M.J. Miller, A. W. Yasko, M.J. Yaszemski,. Ectopic bone formation by marrow stromal osteoblast transplantation using Poly(Dl-lactic-co-glycolic acid) foams implanted into the rat mesentery, J. Biomed. Mater. Res. 36 (1997) 1-8.
DOI: 10.1002/(sici)1097-4636(199707)36:1<1::aid-jbm1>3.0.co;2-p
Google Scholar
[13]
H. Hermawan, A. Purnama, D. Dubé, J. Couet, D. Mantovani, Fe-Mn alloys for metallic biodegradable stents: Degradation and cell viability studies, Acta Biomater. 6 (2010) 1852-1860.
DOI: 10.1016/j.actbio.2009.11.025
Google Scholar
[14]
C. Park, S.R. Nutt, PM synthesis and properties of steel foam, Mater. Sci. Eng. A 288 (2000) 111-118.
Google Scholar
[15]
F.G. Torres, S.N. Nazhat, Md. Sheikh, S.H. Fadzullah, V. Maquet, A.R. Boccaccini, Mechanical properties and bioactivity of porous PLGA/TiO2 nanoparticle-filled composites for tissue engineering scaffolds, Compos. Sci. Technol. 67 (2007) 1139-1147.
DOI: 10.1016/j.compscitech.2006.05.018
Google Scholar