Asymmetric Synthesis of Ethyl (R)-4-Chloro-3-Hydroxybutanoate with a Two Recombinant Escherichia coli System

Article Preview

Abstract:

The asymmetric reduction of ethyl 4-chloro-acetoacetate (CAAE) to ethyl (R)-4-chloro-3- hydroxybutanoate (R-CHBE) biocatalysed by the aldehyde reductase of Sporobolomyces salmonicolor expressed in E. coli M15 (pQE30-alr) in combination with regeneration of NADPH by the glucose dehydrogenase of Bacillus megaterium expressed in E. coli M15 (pQE30-gdh) was reported. The bioreduction was carried out in a two-phase reaction system with n-butyl acetate as an organic solvent. Bioconversion of 300 mmol CAAE with a final yield of 97.5 % and an enantiometric excess of 99 % was achieved without the addition of cofactor NADPH.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 690-693)

Pages:

1188-1192

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Forni, E. Caselli, F. Prait, M. Bucciarelli, and G.Torre, ARKIVOC xi, 45–53, (2002)

Google Scholar

[2] G. Wang, R. I. Hollingsworth, Tetrahedron: Asymmetry 10 (1999) 1895–1901.

Google Scholar

[3] J.Y. He, Z.H. Sun, W.Q. Ruan, and Y. Xu, Process Biochem. 41 (2006) 244–249.

Google Scholar

[4] H. Yamada, S. Shimizu, M. Kataoka, H. Sakai, and T. Miyoshi, FEMS Microbiol. Lett. 70 (1990) 45–48.

Google Scholar

[5] H.Yamamoto, A. Matsuyama, and Y. Kobayashi, Biosci. Biotechnol. Biochem. 66 (2002) 481–483.

Google Scholar

[6] M.A. Yu, Y.M. Wei, L. Zhao, L. Jiang, X.B. Zhu, and W.Qi, J. Ind. Microbiol. Biotechnol. 34 (2007) 151–156.

Google Scholar

[7] G. H. Gong, Y. Hou, Q. Zhao, M.A. Yua, F. Liao, L. Jiang, and X. L.Yang, Process Biochem. 45 (2010) 1445–1449.

Google Scholar

[8] M. Katz, T. Frejd, B.Hahn-Ha gerdal, and M. F. Gorwa-Grauslaund, Biotechnol. Bioeng. 84 (2003) 573–582.

Google Scholar

[9] S. Rodrı´guez, M. M. Kayser, and J. D. Steward, J. Am. Chem. Soc. 123 (2001) 1547–1556.

Google Scholar

[10] J.B. Ribeiro, A.D.S. Ramos, S.B. Fiaux, S.G. Ferreira Leite, M.C.K. Ramos, F.R. de Aquino Neto, and A. C. Antunes, Tetrahedron: Asymmetry 20 (2009) 2263–2266.

DOI: 10.1016/j.tetasy.2009.09.018

Google Scholar

[11] Z.H. Yang, S.J. Yao, D.Q. Lin, Ind. Eng. Chem. Res. 43 (2004) 4871–4875.

Google Scholar

[12] Y.Yasohara, N. Kizaki, J. Hasegawa, S. Takahashi, M. Wada, M. Kataoka, and S. Shimizu, Appl. Microbiol. Biotechnol. 51 (1999) 847–851.

DOI: 10.1007/s002530051472

Google Scholar

[13] K.J. Jing, Z.N. Xu, Y. Liu, X.X. Jiang, L. Peng and P.L. Cen, Prep. Biochem. Biotechnol. 35 (2005) 203–215.

Google Scholar

[14] T.Ema, H. Yagasaki, N. Okita, M. Takeda, and T. Sakai, Tetrahedron 62 (2006) 6143–6149

Google Scholar

[15] H. Engelking, R. Pfaller, G. Wich, D. Weuster-Botz, Tetrahedron: Asymmetry 15 (2004) 3591–3593.

DOI: 10.1016/j.tetasy.2004.09.021

Google Scholar

[16] S. Shimizu, M. Kataoka, M. Katoh, T. Morikawa, T. M iyoshi, and H.Yamada, Appl. Environ. Microbiol. 56 (1990) 2374–2377.

Google Scholar

[17] S. Shimizu, A. Kataoka, A. Morishita, M. Katoh, T. Morikawa, T. Miyoshi, H. Yamada, Biotechnol. Lett. 12 (1990) 593–596.

DOI: 10.1007/bf01030758

Google Scholar

[18] K. Kita, K. Matsuzaki, T. Hashimoto, H. Yanase, N. Kato, M.C.M. Chung, M. Kataoka, and S. Shimizu, Appl. Environ. Microbiol. 62 (1996) 2303–2310.

DOI: 10.1128/aem.62.7.2303-2310.1996

Google Scholar

[19] M. Kataoka, L.P.S. Rohani, K. Yamamoto, M. Wada, H. Kawabata, K. Kita, H. Yanase, and S. Shimizu, Appl. Microbiol. Biotechnol. 48 (1997) 699–703.

Google Scholar

[20] M. Kataoka, K. Yamamoto, H. Kawabata, M. Wada, K. Kita. H. Yanase, and S. Shimizu, Appl. Microbiol. Biotechnol. 51 (1999) 486–490.

Google Scholar

[21] P. Fernandes, P. Vidinha, T. Ferreira, H. Silvestre, and J.M.S. Cabral, J. Mol. Catal. B. Enzymatic 20 (2002) 353–361.

Google Scholar