Kinetics Study of Vitamin A Precursor Synthesis by Immobilized Lipase-Catalyzed Regioselective Monoacetylation in n-Hexane

Article Preview

Abstract:

Vitamin A is an essential nutrient element in animal and human growth, which is usually produced by partially acetylating and transforming retinyl diol. The lipase-catalyzed mono-acetylation can obtain pure monoacetate compared with the classical chemistry process. In the current work, the synthesis of vitamin A precursor of Candida antarctica lipase B catalyzed by regioselective monoacetylation of primary hydroxyl of diol in n-hexane was studied. The reaction rate could be described in terms of the Michaelis-Menten equation with a Ping-Pong Bi-Bi mechanism and competitive inhibition by both substrates. A kinetic model was developed, and the apparent kinetic parameters were calculated as: Vmax =8.45 mmol/ (L•h); K m, vinyl =0.997 mmol/L; K m, diol =161.28 mmol/L; K i, diol =287.32 mmol/L; K i, monoacetate=18.13 mmol/L; and K I, diol =427.40 mmol/L. The current study indicates a competitive enzyme inhibition of highly concentrated diol during lipase-catalyzed acetylation reaction. When the diol concentration in the medium was low, there was a good conformity between the experimental and simulated values with 4.73% average relative error.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 690-693)

Pages:

1218-1223

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Duester, Eur. J. Biochem., 267 (2000) 4315-4321.

Google Scholar

[2] M. H. Zile, J. Nutr., 131 (2001) 705-708.

Google Scholar

[3] K. L. Keller, and N. A. Fenske, J. Am. Acad. Dermatol., 39 (1998) 611-625.

Google Scholar

[4] A. M. Kligman, Postgra. Medi., 102 (1997) 115-121.

Google Scholar

[5] P. Di Mascio, M. E. Murphy, and H. Sies, Am. J. Clin. Nutr., 53 (1991) 194-200.

Google Scholar

[6] S. C. Rackett, M. J. Rothe, and J. M. Grant-Kels, J. Am. Acad. Dermatol., 29 (1993) 447-461.

Google Scholar

[7] F. Ullmann, W. Gerhartz, Y. S. Yamamoto, F. T. Campbell, R. Pfefferkorn, and J. F. Rounsaville, Ullmanns Encyclopaedia of Industrial Chemistry, (2005).

Google Scholar

[8] K. F. Hsiao, F. L. Yang, S. H. Wu, and K. T. Wang, Biotechnol. Lett., 18 (1996) 1277-1282.

Google Scholar

[9] B. Orsat, B. Wirz, and S. Bischof, CHIMIA Int. J. Chem., 53 (1999) 579-584.

Google Scholar

[10] W. Bonrath, R. Karge, and T. Netscher, J. Mol. Catal. B: Enzymatic, 19 (2002) 67-75.

Google Scholar

[11] W. Bonrath, and T. Netscher, Appl. Catal. A: General, 280 (2005) 55-62.

Google Scholar

[12] A. Abate, E. Brenna, C. Fuganti, F. G. Gatti, and S. Serra, J. Mol. Catal. B: Enzymatic, 32 (2004) 33-37.

Google Scholar

[13] B. Orsat, P. Spurr, and B. Wirz, European Patent, (2001).

Google Scholar

[14] M. Romero, L. Calvo, C. Alba, and A. Daneshfar, J. Biotechnol., 127 (2007) 269-277.

Google Scholar

[15] X. F. Li, M. H. Zong, H. Wu, and W. Y. Lou, J. Biotechnol., 124 (2006) 552-560.

Google Scholar

[16] J. Wu, M. H. Zong, H. Wu, and W. Y. Lou, J. Chem. Technol.Biotechnol., 83 (2008) 814-820.

Google Scholar

[17] A. L. Paiva, V. M. Balcão, and F. X. Malcata, Enzyme Microb. Technol., 27 (2000) 187-204.

Google Scholar

[18] A. Zaidi, J. Gainer, G. Carta, A. Mrani, T. Kadiri, Y. Belarbi, and A. Mir, J. of Biotechnol., 93 (2002) 209-216.

DOI: 10.1016/s0168-1656(01)00401-1

Google Scholar

[19] M. Degueil-Castaing, B. De Jeso, S. Drouillard, and B. Maillard, Tetrahedron Lett., 28 (1987) 953-954.

DOI: 10.1016/s0040-4039(00)95884-2

Google Scholar