Influence of Rear Earth Yb on the Specific Heat of Liquid Fe-Co-Yb Alloy

Article Preview

Abstract:

By Monte Carlo method with EAM potentials, the specific heat of liquid Co50Fe50 and Co48Fe48Th4 alloys at different temperatures are obtained. The effect of Th on the thermophysical parameters is examined. Over the temperature range from 1400 to 2000 K, the specific heat decreases from to Jmol-1K-1 after Th was added. It is the addition of Th element which has bigger atomic radius, larger atomic mass, and complex arrangement of extranuclear electron, leads to the reduced specific heat.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 690-693)

Pages:

1840-1845

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. McHugh, P. Fideu, A. Herrmann, W. Stark, Polymer Testing 29 (2010) 759-765.

Google Scholar

[2] G. Wilde, Journal of Non-Crystalline Solids 307-310 (2002) 853-862.

Google Scholar

[3] M. Baricco, L. Battezzati, P. Rizzi, Journal of Alloys and Compounds 220 (1995) 212-216.

Google Scholar

[4] M. S. Daw and M. I. Baskes, Phys. Rev. Lett. 29 (1984) 6443.

Google Scholar

[5] S. M. Foiles and M. I. Baskes, M. S. Daw, Phys. Rev. B 33 (1986) 7983.

Google Scholar

[6] R. A. Johnson and Phys. Rev. B 39 (1989) 12554.

Google Scholar

[7] S. E. Imamova, P. A. Atanasov, N. N. Nedialkov, F. Dausinger, P. Berger, Nuclear Instruments and Methods in Phys. Res. B 227 (2005) 490-498.

DOI: 10.1016/j.nimb.2004.10.002

Google Scholar

[8] Y. F. Ouyang, H. W. Shi, X. P. Zhong, J Guangxi Uni. (Nat Sci Ed) 31 (2006) 32-35.

Google Scholar

[9] Y. Tsuchiya, J. Phys.: Condens. Matter 3 (1991) 3163.

Google Scholar

[10] R. N. Singh, R. P. Jaju and I. Ali, Physica B 299 (2001) 108-119.

Google Scholar

[11] G. Wilde, G.P. Gijrler, R. Willnecker, Journal of Non-Crystalline Solids 205-207 (1996) 317-321.

Google Scholar

[12] G. Wilde, C. Mitsch, G.P. Gijrler, R. Willnecker, Journal of Non-Crystalline Solids 205-207 (1996) 425-429.

DOI: 10.1016/s0022-3093(96)00451-6

Google Scholar

[13] F. Kakinuma, S. Ohno, K. Suzuki, Journal of Non-Crystalline Solids 250-252 (1999) 453-457.

DOI: 10.1016/s0022-3093(99)00276-8

Google Scholar

[14] S.H. Zhou, J. Schmid, F. Sommer, Thermochimica Acta 339 (1999) 1-9.

Google Scholar

[15] W. Zalewski, J. Antonowicz, R. Bacewicz, and J. Latuch, J. Alloys Compd. 468 (2009) 40-46.

Google Scholar

[16] Y. E. Kalay, L. S. Chumbley, M. J. Kramer, and I. E. Anderson, Intermetallics 18 (2010) 1676-1682.

DOI: 10.1016/j.intermet.2010.05.005

Google Scholar

[17] Y. E. Kalay, I. Kalay, J. Hwang, P. M. Voyles, and M. J. Kramer, Acta Mater. 60 (2012) 994-1003.

DOI: 10.1016/j.actamat.2011.11.008

Google Scholar

[18] S. G. Hao, C. Z. Wang, M. J. Kramer, and K. M. Ho, J. Appl. Phys. 107 (2010) 053511.

Google Scholar

[19] R. Busch, E. Bakke, and W. L. Johnson, Acta Mater. 46 (1998) 4725-4732.

Google Scholar

[20] H. Choi-Yim, R. Busch, and W. L. Johnson, J. Appl. Phys. 83 (1998) 7993-7997.

Google Scholar