[1]
M.L.A. Graça, C.Y. Hoo O.M.M. Silva and N.J. Lourenço, Failure analysis of a 300M steel pressure vessel. Eng. Failure Anal. 16 (2009) 182-186.
DOI: 10.1016/j.engfailanal.2008.02.003
Google Scholar
[2]
R. Ritchie, R. Horn, Further considerations on the inconsistency in toughness evaluation of AISI 4340 steel austenitized at increasing temperatures. Metall. Mater. Trans. A 9 (1978) 331-341.
DOI: 10.1007/bf02646382
Google Scholar
[3]
Z.J. Yan,S. Min,L. Dabo,L. Xiaogang and L. Tianqi, Effects of chromium on corrosion and electrochemical behaviors of ultra high strength steels. International Journal of Minerals, Metallurgy and Materials 17 (2010) 282-289.
DOI: 10.1007/s12613-010-0306-8
Google Scholar
[4]
S. Min,X. Kui,D. Chaofang and L. Xiaogang, Electrochemical corrosion behavior of 300M ultra high strength steel in chloride containing environment. Acta Metallurgica Sinica (English Letters) 23 (2010) 301-311.
Google Scholar
[5]
D. Figueroa, M.J. Robinson, Hydrogen transport and embrittlement in 300 M and AerMet100 ultra high strength steels. Corros. Sci. 52 (2010) 1593-1602.
DOI: 10.1016/j.corsci.2010.01.001
Google Scholar
[6]
Lee W-S, Su T-T. Mechanical properties and microstructural features of AISI 4340 high-strength alloy steel under quenched and tempered conditions. Journal of Materials Processing Technology, 1999, 87(1-3): 198-200.
DOI: 10.1016/s0924-0136(98)00351-3
Google Scholar
[7]
Salemi A, Abdollah-zadeh A. The effect of tempering temperature on the mechanical properties and fracture morphology of a NiCrMoV steel. Materials Characterization, 2008, 59(4): 484-488.
DOI: 10.1016/j.matchar.2007.02.012
Google Scholar
[8]
Dabkowski D S, Konkol P J, Rathbone A M.High strength steel[P].Hy180.U.S. Patent: 3502462,1970.
Google Scholar
[9]
Lee E W, Kozol J.Al-Li alloys and ultrahigh strength steels for U.S. Navy aircraft. JOM,1990:11-14.
DOI: 10.1007/bf03220940
Google Scholar
[10]
Hemphill.High strength, high fracture toughness structural alloy [P].U.S. Patent: 5087415,1992.
Google Scholar
[11]
James M Dahl. Ferrous-base aerospace alloys. Advanced Materials and Processes, 2000, 5:33-36.
Google Scholar
[12]
Speich G R, Dabkowski D S, Porter L F. Strength and Toughness of Fe-10Ni alloys containing C, Cr, Mo, and Co.Metall.Trans., 1973, 4:303-31.
DOI: 10.1007/bf02649630
Google Scholar
[13]
Davenport A T, Honeycombe R W K.The secondary hardening of tungsten steels. Met.Sci., 1975, 9:201-208.
Google Scholar
[14]
Olson G B. Overview: Science of Steel. In Innovations in Ultrahigh Strength Steel Technology, Proc. 34Th Sagamore Army Materiala Research Conf.. Olson G B, Azrin M,E.S. Wright,eds., U.S. Army Materials Technology Laboratory, Watertown, MA, 1990. 632-667.
Google Scholar
[15]
Ping Zhong. Microstructure and Mechanical Properties in Isothermal Tempering of High Co-Ni Secondary Hardening Ultrahigh Strength Steel. Journal of Iron and Steel Research, International, 2007, 14(5, Supplement 1): 292.
DOI: 10.1016/s1006-706x(08)60097-7
Google Scholar
[16]
Ping Zhong. Effect of Tempering Temperature on Microstructure and Mechanical PropertiesinSteel of tungsten steels. Journal of Iron and Steel Research, International, 2007, 14(5, Supplement 1): 288.
Google Scholar
[17]
Choong Hwa Yoo, Hyuck Mo Lee, et al. M2C precipitates in isothermal tempering of high Co-Ni secondary hardening steel[J]. Metall.Trans., 1996, 27A(11): 3466-3472.
DOI: 10.1007/bf02595438
Google Scholar