Effect of Water Vapor on Oxidation of Ferritic Stainless Steel 21Cr-0.6Mo-Nb-Ti in Simulated Reheating Environment

Article Preview

Abstract:

High temperature oxidation of ferritic stainless steel 21Cr-0.6Mo-Nb-Ti was carried out isothermally at 1100 oC under different water vapour content conditions in an electrical furnace. Water vapour does accelerate the formation of oxide scale of stainless steel 21Cr-0.6Mo-Nb-Ti, however, it is not significant. Some oxide grains consist of spinel crystal structure, which should be spinel Manganese Chromite. In dry air atmosphere, the grain of the spinel is more and bigger than that in wet air. No breakaway oxidation occurs in the experiment indicating that 21Cr-0.6Mo-Nb-Ti has very high oxidation resistance, which might be contributed by the formation of MnCr2O4 and compact protective chromia. In addition, continuous silica formed along and accumulated at the oxide metal interface performs like a diffusion barrier.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 690-693)

Pages:

280-289

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N.R. Baddoo: Constructional Steel Research vol. 64, (2008). pp.1199-1206

Google Scholar

[2] D. J. Ha, H. K. Sung, S. Lee, J. S. Lee, and Y. D. Lee: Materials Science and Engineering vol. 507, (2009). pp.66-73

Google Scholar

[3] T. Toriumi and A. Azushima: Tetsu to Hagane-Journal of the Iron and Steel Institute of Japan vol. 97, Jul (2011). pp.388-392

DOI: 10.2355/tetsutohagane.97.388

Google Scholar

[4] D. J. Ha, Y. j. Kim, J. S. Lee, and S. Lee: The Minerals, Metals & Materials Society and ASM International 2009 (2009).

Google Scholar

[5] D. J. Ha, C.-Y. Son, J. W. Park, J. S. Lee, Y. D. Lee, and S. Lee: Materials Science and Engineering vol. A 492, (2008). pp.49-59

Google Scholar

[6] D. J. Ha, H. K. Sung, S. Lee, J. S. Lee, and Y. D. Lee: Journal of the Korean Institute of Metals and Materials vol. 46, Nov (2008). pp.707-716

Google Scholar

[7] Y. Hidaka and S. Lida: Tetsu to Hagane-Journal of the Iron and Steel Institute of Japan vol. 96, (2010). pp.156-161

Google Scholar

[8] M.J. Capitan, S.Lefebvre, A. Traverse, A. Paul, and J. A. Odriozola: Materials Chemistry vol. 8, (1998). pp.2293-2298

Google Scholar

[9] D. Peckner and I.M. Bernstein, Handbook of stainless steels: McGraw-Hill Book Company, (1977).

Google Scholar

[10] J. Shen, L. Zhou, and T. Li: Oxidation of Metals vol. 48, (1997). pp.347-356

Google Scholar

[11] A. Fry, S. Osgerby, and M. Wright, "Oxidation of alloys in steam environments-a review," ed. NPL Materials Centre, 2002.

Google Scholar

[12] E. Essuman, G. H. Meier, J. Zurek, and M. Hansel: Oxid Met vol. 69, (2008). pp.143-162

Google Scholar

[13] H.E. Evans: Oxidation of Metals vol. 52, (1999). pp.379-401

Google Scholar

[14] Oxidation. Available: http://www.rolledalloys.cn/trcdocs/heatresist/Oxidation.pdf

Google Scholar

[15] N. Birks, G. H. Meier, and F. S. Pettit, High-temperature oxidation of metals: Cambridge University Press, (2005).

Google Scholar

[16] D. J. Young, High temperature oxidation and corrosion of metals: Elsevier, (2008).

Google Scholar

[17] S. Mrowec. (1982, An introduction to the theory of metal oxidation. 454.

Google Scholar

[18] S. Henry, A. Galerie, and L. Antoni: Materials Science Forum vol. 369-372, (2001). pp.353-360

Google Scholar

[19] M. Reichardt: Wire Industry vol. 68, (2001). p.503, 505-507

Google Scholar

[20] G. R. Holcomb and D. E. Alman: ASM International vol. 15, (2006). pp.394-398

Google Scholar

[21] S. Rao: Oxid Met vol. 10.1007, (2011).

Google Scholar