Analysis on micro-/poly-Crystalline SiGe Alloy Solar Cells

Article Preview

Abstract:

Performance of micro-/poly-crystalline SiGe alloy solar cell of TCO/(n)a-Si:H/(i)a-Si/(p) c(pc)-SiGe/(p+)μc-Si/Al structure was analyzed via the AFORS-HET software. Cell structures can be designed to reach up to the optimal performance. Employment of back surface electric field layer of (p+)μc-Si could improve cell properties. The maximum photoelectric conversion efficiency η=21.48% occurs in a cell with average Ge percent content x0.1 and 250 m-thick Si1-xGex alloy light absorption layer, which is higher than the experimental result of the same absorption layer thickness crystalline Si HIT cell [Progress in Photovoltaics: Research and Applications, 8 (2000) 503.]. Temperature dependence of the cell performance parameters (open circuit voltage Voc, circuit current density Jsc, fill factor FF and efficiency η) indicates that Si0.9Ge0.1 cell shows weaker temperature sensitivity than that of pure Si cell. Numerical calculation illustrates that Voc decreases while Jsc, FF and η heighten with raising mean grain sizes and crystalline volume fractions, these variations with the later are more remarkable. Present optimized technique will be benefit to designing and fabricating the high performance solar cell.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 690-693)

Pages:

2872-2880

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Summonte, R. Rizzoli, D. Iencinella, E. Centurioni, A. Desalvo and F. Zignani: J. Non- Cryst. Solids. Vol. 38 (2004), pp.706-709.

DOI: 10.1016/j.jnoncrysol.2004.03.059

Google Scholar

[2] J. F. Tian, D. S. Jiang, B. R. Zeng, Lin Huang, G. L. Kong and L. Y. Lin: Solid State Commun. Vol. 57 (1986), pp.543-544.

Google Scholar

[3] S. Z. Xiong and M. F. Zhu: Solar cells foundation and application (Trans Tech Publications, Beijing 2010).

Google Scholar

[4] K. V. Maydell, E. Conrad and M. Schmidt: Prog. Photovoit: Res. Appli. Vol. 14 (2006), pp.289-295.

Google Scholar

[5] G. F. Jerry: IEEE. T. Electron. Dev. Vol. 24 (1977), pp.322-325.

Google Scholar

[6] M. H. Liao and C. H. Chen: IEEE. T. Nano. Technol. Vol. 10 (2011), pp.770-773.

Google Scholar

[7] Wangrong Zhang, Zheng Zeng and Jisheng Luo: Chin. J. L. Tempe. Phys. Vol. 18 (1996), pp.311-315.

Google Scholar

[8] Xiaoyan Wang, Heming Zhang, Jianjun Song, Guanyu Wang and Jiuhua An: Acta. Phys. Sin-ch ed. Vol. 60 (2011), pp.77205-77208.

Google Scholar

[9] A. Froitzheim, R. Stangl, L. Elstner, M. Kriegel and W. Fuhs, Editor. AFORS-HET:a computer-program for the simulation of heterojunction cells to be distributed for public use, Photovoltaic Energy Conversion, Proceeding of the IEEE 3th World Conference, (2003) May 18-18; Berlin, Germany.

DOI: 10.1109/wcpec.2006.279681

Google Scholar

[10] E. Conrad, K. V. Maydell, H. Angermann, C. Schubert and M. Schmidt, Editors. Sanyo's challenges to the development of high-efficiency HIT solar cells and the expansion of HIT business, Photovoltaic Energy Conversion, Proceeding of the IEEE 4th World Conference, (2006) May 17-18; Hawaii, USA.

DOI: 10.1109/wcpec.2006.279643

Google Scholar

[11] M. A. Green: Solar Cells: Operating Principles, Technology and System Applications (NJ: Prentice-Hall, Englewood Cliffs 1982).

Google Scholar

[12] Feng Shan and Wensheng Wei: Adv. Mater. Res. Vol. 382 (2012), pp.100-102.

Google Scholar

[13] Congliang Zhang and wensheng Wei, Model optimization of nanocrystalline Si:H HIT solar cells, Electric information and control engineering, Proceeding of the IEEE 1st International Conference, (2011) April 15-17; Wuhan, China.

DOI: 10.1109/iceice.2011.5777621

Google Scholar

[14] Lei Zhao, Chunlan Zhou, Hailing Li, Hongwei Diao and Wenjing Wang: Sol. Energy Mater. Sol. Cells. Vol. 92 (2008), pp.673-677.

DOI: 10.1109/pvsc.2012.6318056

Google Scholar

[15] X. L. Wu, G. G. Siu, C. L. Fu and H. C. Ong: Appl. Phys. Lett. Vol.16 (2001), pp.2285-2287.

Google Scholar

[16] B. E. Pieters, H. Stiebig, M. Zeman and R. van Swaaij: J. Appl. Phys. Vol.105 (2009), pp.044502-10.

Google Scholar