DFT Studies on the Electronic Spectrum and the Second-Order Nonlinear Optical Properties of Donor-Acceptor Helicenes

Article Preview

Abstract:

A series of chiral donor-acceptor helicenes have been designed using the molecular engineering of organic nonlinear optical materials. The geometries of donor-acceptor helicenes 1, 2, 3, 4, 5 are optimized using density functional theory (DFT-B3LYP) method at the 6-31g (d, p) basis set level. Based on the obtained stable molecular configuration, we adopt the TDHT/PM3 method and time-dependent density-functional theory (TD-DFT) to calculate the nonlinear optical (NLO) properties and electronic spectra of these molecules. Results show that molecule 4 has the largest static hyperpolarizability βμ of 40.4×10-30esu, which is enhanced by its two charge transfer orientations. In molecule 2, there exists two competitive charge transfers that weaken the second-order nonlinear optical effect of D-π-A structures greatly. The structural type of molecule 3, 4 and 5 are expected to be more efficient to achieve large β values.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 690-693)

Pages:

586-589

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y.Z. Cui, Q. Fang and H. Lei: Chem. Phys. Lett. Vol. 337 (2003), p.507.

Google Scholar

[2] G.C. Yang, Z.M. Su and C.S. Qin: J. Phys. Chem. A. Vol. 110 (2006), p.4817.

Google Scholar

[3] K.S. Suslick, C.T. Chen and G.R. Meredith: J. Am. Chem. Soc. Vol. 114 (1992), p.6928.

Google Scholar

[4] D.R. Kanis, M.A. Ratner and T.J. Marks: Chem. Rev. Vol. 94 (1994), p.195.

Google Scholar

[5] S. Eriksson, B. Kallebring and S. Larsson: Martensson J. Chem. Phys. Vol. 146 (1990), p.165.

Google Scholar

[6] X.X. Sun, Y. Liu and H.B. Zhao: Acta Phys. Chim. Sin. Vol. 27 (2011), p.315.

Google Scholar

[7] T. Verbiest, S. Sioncke and A. Persoons: J. Photochem. Photobiol. A. Vol. 145 (2001), p.113.

Google Scholar

[8] P. Biju and k: J. Appl. Poly. Sci. Vol. 89 (2003), p.2468.

Google Scholar

[9] E. Botek, B. Champagne and M. Türki: J. Chem. Phys. Vol. 120 (2004), p.2042.

Google Scholar

[10] X.O. Wang, J.Q. Li and C.F. Li: Chem. Phys. Vol. 320 (2005), p.37.

Google Scholar

[11] E. Botek, J.M. Andre and B. Champagne: J. Chem. Phys. Vol. 122 (2005), p.2347.

Google Scholar

[12] K. Clays, K. Wostyn and A. Persoons: Chem. Phys. Lett. Vol. 372 (2003), p.438.

Google Scholar

[13] S. Sioncke, T. Verbiest and A. Persoons: Mater. Sci. Eng. R. Vol. 42 (2003), p.115.

Google Scholar