The Influence of B2O3 on the Luminescence Behavior of ZnGa2O4 Phosphor at Different Sinter Temperatures

Article Preview

Abstract:

ZnGa2O4 phosphors have been synthesized by solid state reaction at different temperatures with different B2O3 concentration incorporated in the experiments. All samples present green (509 nm) and red (696 nm) emission bands under ultraviolet excitation (250 nm), whose intensity changes because of the increasing B2O3 contents. The green and the red long afterglow have been observed after removing the ultraviolet light and the performance largely improves with the introduction of B2O3. The effects of the doping contents of B2O3 as well as the sintering temperatures on the luminescent properties of the obtained products have been investigated. The introduction of B2O3 changes the ratio of the two emitting centers and increases the depth of the trap centers in the samples.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 690-693)

Pages:

627-631

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L.E. Shea, Electrochem. Soc. Interface Vol. 18 (1998), p.14

Google Scholar

[2] T. Minami, Y. Kuroi, T. Miyata, H. Yamada and S. Takata, J. Lumin. Vol.72 (1997), p.997

Google Scholar

[3] A. Vecht, D.W. Smith, S.S. Chadha and C.S. Gibbons, J. Vac. Sci. Technol. Vol.B12 (1994), p.78

Google Scholar

[4] C.T. Yu, L. Pang, J. Appl. Phys. Vol.79 (1996), p.7191

Google Scholar

[5] L.P. Sosman, T. Abritta, A.C. Pereira and H. Vargas, Chem. Phys. Lett. Vol.227 (1994), p.485

Google Scholar

[6] T. Omata, N. Ueda, K. Ueda and H. Kawazoe, Appl. Phys. Lett. Vol.64 (1994), p.1077

Google Scholar

[7] C.K. Chang, L. Jiang, D.L. Mao and C.L. Feng, Ceramics International Vol.30 (2004), p.285

Google Scholar

[8] C.K. Chang, L. Jiang, D.L. Mao and C.L. Feng, J. Alloys. Comp. Vol.348 (2003), pp.224-230

Google Scholar

[9] J. S. Kim, H. I. Kang, W. N. Kim, J. I. Kim, J. C. Choi and H. L. Park, Appl. Phys. Lett. Vol.82 (2004), p.(2029)

Google Scholar

[10] Y. J. Li, M. Y. Lu, C. W. Wang, K. M. Li and L. J. Chen, Appl. Phys. Lett. Vol.88 (2006), p.143102

Google Scholar

[11] S.S. Yi, I.W. Kim, J.S. Bae, B.K. Moon, S.B. Kim and J.H. Jeong, Mater. Lett. Vol.57 (2002), p.904

Google Scholar

[12] I. J. Hsieh, K. T. Chu, C. F. Vu and M. S. Feng, J. Appt. Phys. Vol.76 (1994), p.3735

Google Scholar

[13] F. Claba, X. Rocquefelte, S. Jobic, P. Deniard, M.H. Whangbo, A. Garcia and T.Le Mercier, Chem. Mater. Vol.17 (2005), p.3904

Google Scholar

[14] J.T. Chen, F. Gu and C.Z. Li, Cryst. Growth Des., Vol.8 (2005), p.3175

Google Scholar