Study of Optical Characteristics of H2S Molecule Adsorption on Agn (n=3,5) Clusters

Article Preview

Abstract:

All electronic structures and infrared adsorption spectra of AgnH2S (n=3, 5) clusters have been performed by using density functional theory. We obtain the lowest-energy structures of Ag3, Ag5, Ag3H2S and Ag5H2S clusters. The calculation results show that the lowest-energy structures of Ag3 and Ag5 clusters are planar geometries. The lowest-energy structures of Ag3H2S and Ag5H2S can be obtained by adsorbs immediately H2S on Ag3 and Ag5 clusters. The peak of infrared spectrum is 120cm-1 for Ag3 cluster, which is smaller than that of Ag5 cluster (180 cm-1). The peak of infrared spectrum is 350cm-1 for Ag3H2S cluster, which is larger than that of Ag5H2S cluster (290 cm-1). The comparison illustrates that adsorption H2S molecule make the peak of infrared spectrum shifting to shortwave.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 690-693)

Pages:

611-614

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Mostafavi, J. L. Marignier, J. Amblard, J. Belloni, Phys. D 12 (1989) 31

Google Scholar

[2] G. M. Koretsky, M. B. Knickelbein, J. Chem. Phys. 107 (1997) 10555

Google Scholar

[3] R. S. Eachus, A. P. Marchetti, A. A. Muenter, Annu. Rev. Phys. Chem. 50 (1999) 117

Google Scholar

[4] S. H. Kim, G. Mederiors, D. A. Ribeiro, et al., J. Phys. Chem. 103 (1999) 10341

Google Scholar

[5] G. F. Zhao, Y. Lei, Z. Zeng, Chem. Phys. 327 (2006) 261

Google Scholar

[6] S. Lecoultre, A. Rydlo, J. Buttet, et al., J. Chem. Phys. 134 (2011) 184504

Google Scholar

[7] L. R. Brown, O. V. Naumenko, E. R. Polovtseva, et al., J. Proc. SPIE. 59 (2004) 5311

Google Scholar

[8] L. R. Brown, J. A. Crisp, D. Crisp, et al., J. Mol. Spectrosc.188 (1998) 148

Google Scholar

[9] D. X. Tian, H. L. Zhang, J. J. Zhao, Solid State Commun. 144 (2007) 174

Google Scholar

[10] B. C. Gates, O. S. Alexeev, Ind. Eng. Chem. Res. 42 (2003) 1571

Google Scholar

[11] G. F. Zhao, J. M. Sun, Z. Zeng, Chem. Phys. 342 (2007) 267

Google Scholar

[12] I. P. Hamilton, Chem.Phys. Lett. 390 (2004) 517

Google Scholar

[13] K. Sugawara, F. Sobott, A. Vakhtinc, J. Chem. Phys. 118 (2003) 7808

Google Scholar

[14] X. J. Kuang, X. Q. Wang, G. B. Liu, Appl. Surf. Sci. 257 (2011) 6546

Google Scholar

[15] V. Bonacic-Koutecký, J. Pittner, M. Boiron, et al., J. Chem. Phys. 110 (1999) 3876

Google Scholar

[16] M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., GAUSSIAN 03, Revision A. 1, Gaussian Inc., Pittsburgh PA, (2003)

Google Scholar

[17] A. D. Becke, J. Chem. Phys. 98 (1993) 5648

Google Scholar

[18] J. P. Perdue, Phys. Rev. B 33 (1986) 8822

Google Scholar