[1]
B. Ronan, M.T. Nadia, T. Daniel, A global human walking model with real-time kinematic personification, The Visual Computer 6-6 (1990) 344-358.
DOI: 10.1007/bf01901021
Google Scholar
[2]
S. Corazza, L. Mündermann, A.M. Chaudhari, T. Demattio, C. Cobelli, T.P. Andriacchi, A markerless motion capture system to study musculoskeletal biomechanics: visual hull and simulated annealing approach, Annals of Biomedical Engineering 34-6 (2006) 1019-1029
DOI: 10.1007/s10439-006-9122-8
Google Scholar
[3]
J. Perry, Gait Analysis, SLACK inc., U.S.A., 1992.
Google Scholar
[4]
J. Rueterbories, E.G. Spaich, B. Larsen, O.K. Andersen, Methods for gait event detection and analysis in ambulatory systems, Medical Engineering & Physics 32-6 (2010) 545-552.
DOI: 10.1016/j.medengphy.2010.03.007
Google Scholar
[5]
C.M. O'Connor, S.K. Thorpe, M.J. O'Malley, C.L. Vaughan, Automatic detection of gait events using kinematic data, Gait & Posture 25-3 (2004) 469-474.
DOI: 10.1016/j.gaitpost.2006.05.016
Google Scholar
[6]
A. Hreljac, R.N. Marshall, Algorithms to determine event timing during normal walking using kinematic data, Journal of Biomechanics 33-6 (2000) 783-786.
DOI: 10.1016/s0021-9290(00)00014-2
Google Scholar
[7]
A.M.S. Muniz, J. Nadal, Application of principal component analysis in vertical ground reaction force to discriminate normal and abnormal gait, Gait & Posture 29-1 (2009) 31-35.
DOI: 10.1016/j.gaitpost.2008.05.015
Google Scholar
[8]
H. Stolzea, J.P. Kuhtz-Buschbecka, C. Mondwurfa, A. Boczek-Funckea, K. Jöhnka, G. Deuschlb, M. Illert, Gait analysis during treadmill and overground locomotion in children and adults, Electroencephalography and Clinical Neurophysiology/Electromyography and Motor Control 105-6 (1997) 490-497.
DOI: 10.1016/s0924-980x(97)00055-6
Google Scholar
[9]
N. Hayafune, Y. Hayafune, H.A.C. Jacob, Pressure and force distribution characteristics under the normal foot during the push-off phase in gait, The Foot 9-2 (1999) 88-92.
DOI: 10.1054/foot.1999.0518
Google Scholar
[10]
K. Parvataneni, L. Ploeg, S.J. Olney, B. Brouwer, Kinematic, kinetic and metabolic parameters of treadmill versus overground walking in healthy older adults, Clinical Biomechanics 24-1 (2009) 95-100.
DOI: 10.1016/j.clinbiomech.2008.07.002
Google Scholar
[11]
J.M. Hausdorff, Gait dynamics, fractals and falls: finding meaning in the stride-to-stride fluctuations of human walking, Human Movement Science 26-4 (2007) 555-589.
DOI: 10.1016/j.humov.2007.05.003
Google Scholar
[12]
J.M. Jasiewicz, J.H. Allum, J.W. Middleton, A. Barriskill, P. Condie, B. Purcell, R.C. Li, Gait event detection using linear accelerometers or angular velocity transducers in able-bodied and spinal-cord injured individuals, Gait & Posture 24-4 (2006) 502-509.
DOI: 10.1016/j.gaitpost.2005.12.017
Google Scholar
[13]
K. Tong, M.H. Granat, A practical gait analysis system using gyroscopes, Medical Engineering & Physics 21-2 (1999) 87-94.
DOI: 10.1016/s1350-4533(99)00030-2
Google Scholar
[14]
D.Ming, Y. Hu, Y. Wong, B.Wan, K.D. Luk, J.C. Leong, Risk-tendency graph (RTG): a new gait-analysis technique for monitoring FES-assisted paraplegic walking stability, Medical Science Monitor 15-8 (2009) 105-112.
Google Scholar
[15]
C.F. Richard, L.W. Daniel, L.T. Janet, Effects of galvanic vestibular stimulation during human walking, The Journal of Physilology 517-3 (1999) 931-939.
Google Scholar