[1]
F. Ameri, J. Summers: An agent-based system approach to fixture design, International Journal of Computer Applications in Technology archive, v 36 (3/4), (2009), 284-296.
DOI: 10.1504/ijcat.2009.028050
Google Scholar
[2]
H. V.D Parunak: "Go to the Ant": Engineering Principles from Natural Multi-Agent Systems, Annals of Operation Research, v75, (1997), 69-101.
Google Scholar
[3]
Lopez-Juarez, J. Corona-Castuera, M. Pen˜a-Cabrera, K. Ordaz-Hernandez: On the design of intelligent robotic agents for assembly, Information Sciences, 171, (2005), 377–402.
Google Scholar
[4]
G. La Rocca, M.J.L. Van Tooren: Enabling distributed multi-disciplinary design of complex products: a knowledge based engineering approach, J. of Design Research, v5(3), (2007), 333-352.
DOI: 10.1504/jdr.2007.014880
Google Scholar
[5]
M.J.L. van Tooren, et al: Design and technology in aerospace. Parametric modeling of complex structure systems including active components, 13th International Conference on Composite Materials, S. Diego, CA, (2003).
Google Scholar
[6]
R. Curran, et al: A multidisciplinary implementation methodology for knowledge based engineering: KNOMAD, Expert Systems with Applications, v 37, (2010), 7336-7350.
DOI: 10.1016/j.eswa.2010.04.027
Google Scholar
[7]
G. Colombo, G. Facoetti, S. Gabbiadini, C. Rizzi: Knowledge-based system for guided modelling of sockets for lower limb prostheses, Computer Aided Design and Applications, v7 (5), (2010) 723-737.
DOI: 10.3722/cadaps.2010.723-737
Google Scholar
[8]
J. Schaefer, S. Rudolph: Satellite Design by Design Grammars. Aerospace Science and Technology (AST), 9, (2005), 81–91.
DOI: 10.1016/j.ast.2004.08.003
Google Scholar
[9]
R. Allan, Survey of Agent Based Modelling and Simulation Tools, http://193.62.125.70/Complex/ ABMS/.
Google Scholar
[10]
A. Oluyomi, S. Karunasekera, L. Sterling: Description templates for agent-oriented patterns, The Journal of Systems and Software, 81, (2008), 20–36
DOI: 10.1016/j.jss.2007.06.020
Google Scholar
[11]
R. Kicinger and T. Arciszewski: Breeding Better Buildings, American Scientist, v95, (2007), 502-508.
DOI: 10.1511/2007.68.3698
Google Scholar
[12]
B. D'Souza, T. W. Simpson: A genetic algorithm based method for product family design optimization, Engineering Optimization, v35(1), (2003),1-18.
Google Scholar
[13]
J. S. Gero: Computational Models of Innovative and Creative Design Processes, Technological Forecasting and Social Change, 64, (2000), 183-196.
DOI: 10.1016/s0040-1625(99)00105-5
Google Scholar
[14]
N. P. Suh, Axiomatic Design Theory for Systems, Research in Engineering Design, 10, (1998). 189-209.
Google Scholar
[15]
G. Pahl, W. Beitz, J. Feldhusen, K.H. Grote: Engineering Design: a Systematic Approach, Third Edition, Spring-Verlag, Berlin, Heidelberg, (2007).
Google Scholar
[16]
Y. Hou, L. Ji, Six-Stage Design Framework, Kybernetes, 37( 9/10), (2008),1349-1358.
DOI: 10.1108/03684920810907643
Google Scholar
[17]
Y. Hou and L. Ji, Partially autonomous conceptual development of multifunctional structures, International Journal of Computer Applications in Technology, 40(1-2), (2011), 13-22
DOI: 10.1504/ijcat.2011.038547
Google Scholar
[18]
http://www.accessscience.com/...Embryogenesis
Google Scholar
[19]
C. A. Kimmel, J. Buelke-Sam, ed., Developmental Toxicology, 2ed Edition, Raven press, New York, 1994.
Google Scholar
[20]
http://homepages.rpi.edu/~bellos/transcription.htm
Google Scholar