A Two-Grid Method of Nonconforming Element Based on the Shifted-Inverse Power Method for the Steklov Eigenvalue Problem

Article Preview

Abstract:

This paper establishes a new kind of two-grid discretization scheme of nonconforming Crouzeix-Raviart element based on the shifted-inverse power method for the Steklov eigenvalue problem. The error estimates are provided from the work of Yang and Bi (SIAM J. Numer. Anal., 49, pp.1602-1624, 2011). Finally, numerical experiments are reported to illustrate the high efficiency of the two-grid discretization scheme proposed in this paper.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 694-697)

Pages:

2918-2921

Citation:

Online since:

May 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Bergmann, M. Schiffer, Kernel function and elliptic differential equations in mathematical physics, Academic, New York, 1953.

Google Scholar

[2] C. Conca, J. Planchard, M. Vanninathan, Fluid and periodic structures, Wiley, New York, 1995.

Google Scholar

[3] A. Bermúdez, R. Rodríguez, D. Santamarina, A finite element solution of an added mass formu- lation for coupled fluid-solid vibrations, Numer. Math., 87, pp.201-227, 2000.

DOI: 10.1007/s002110000175

Google Scholar

[4] J. C. Xu, A new class of iterative methods for nonselfadjoint or indefinite problems, SIAM J. Numer. Anal., 29, pp.303-319, 1992.

DOI: 10.1137/0729020

Google Scholar

[5] J. C. Xu, Two-grid discretization techniques for linear and nonlinear PDEs, SIAM J. Numer. Anal., 33, pp.1759-1777, 1996.

DOI: 10.1137/s0036142992232949

Google Scholar

[6] J. C. Xu, A. H. Zhou, A two-grid discretization scheme for eigenvalue problems, Math. Comput. , 70, pp.17-25, 2001.

Google Scholar

[7] C. S. Chien, B. W. Jeng, A two-grid finite element discretization scheme for semi-linear elliptic eigenvalue problems, SIAM J. Sci. Comput., 27, pp.1287-1304, 2006.

DOI: 10.1137/030602447

Google Scholar

[8] J. H. Chen, F. Liu, A. H. Zhou, A two-scale higher-order finite element discretization for Schrodinger equation, J. Comput. Math., 27, pp.1951-1955, 2009.

Google Scholar

[9] X.G. Gong, L.H. Shen, D. Zhang, A.H. Zhou, Finite element approximations for equations with applications to electronic structure computations, J. Comput. Math., 26, pp.310-323, 2008.

Google Scholar

[10] J. Li, Investigations on two kinds of two-level stabilized finite element methods for the stationary Navier-Stokes equations, Appl. Math. Comput., 182, pp.1470-1481, 2006.

DOI: 10.1016/j.amc.2006.05.034

Google Scholar

[11] K. Kolman, A two-level method for nonsymmetric eigenvalue problems, Acta Math. Appl. Sin-E., 21(1), pp.1-12, 2005.

Google Scholar

[12] Y. N. He, J. C. Xu, A. H. Zhou, Local and parallel finite element algorithms for the Stokes problem, Numer. Math., 109, pp.415-434, 2008.

DOI: 10.1007/s00211-008-0141-2

Google Scholar

[13] Y. Yang, H. Bi, A two-grid discretization scheme based on shifted-inverse power method, SIAM J. Numer. Anal., 49 , pp.1602-1624, 2011.

DOI: 10.1137/100810241

Google Scholar

[14] Q. Li, Y. D. Yang, A two-grid discretization scheme for the Steklov eigenvalue problem, J. Appl. Math. Comput.

Google Scholar

[15] H. Bi, Y. D. Yang, A two-grid method of the non-conforming Crouzeix-Raviart element for the Steklov eigenvalue problem, Appl. Math Comp., 217, pp.9669-9678, 2011.

DOI: 10.1016/j.amc.2011.04.051

Google Scholar

[16] J. H. Bramble, J. E. Osborn, Approximation of Steklov eigenvalues of non-selfadjoint second order elliptic operators, in: A.K. Aziz,(Ed.), Math. Foundations of the Finite Element Method with Applications to PDE, Academic, New York, pp.387-408, 1972.

DOI: 10.1016/b978-0-12-068650-6.50019-8

Google Scholar

[17] Y. D. Yang, Q. Li, S. R. Li, Nonconforming finite element approximations of the Steklov eigenvalue problem, Appl. Numer. Math., 59, pp.2388-2401, 2009.

DOI: 10.1016/j.apnum.2009.04.005

Google Scholar