[1]
S. Bergmann, M. Schiffer, Kernel function and elliptic differential equations in mathematical physics, Academic, New York, 1953.
Google Scholar
[2]
C. Conca, J. Planchard, M. Vanninathan, Fluid and periodic structures, Wiley, New York, 1995.
Google Scholar
[3]
A. Bermúdez, R. Rodríguez, D. Santamarina, A finite element solution of an added mass formu- lation for coupled fluid-solid vibrations, Numer. Math., 87, pp.201-227, 2000.
DOI: 10.1007/s002110000175
Google Scholar
[4]
J. C. Xu, A new class of iterative methods for nonselfadjoint or indefinite problems, SIAM J. Numer. Anal., 29, pp.303-319, 1992.
DOI: 10.1137/0729020
Google Scholar
[5]
J. C. Xu, Two-grid discretization techniques for linear and nonlinear PDEs, SIAM J. Numer. Anal., 33, pp.1759-1777, 1996.
DOI: 10.1137/s0036142992232949
Google Scholar
[6]
J. C. Xu, A. H. Zhou, A two-grid discretization scheme for eigenvalue problems, Math. Comput. , 70, pp.17-25, 2001.
Google Scholar
[7]
C. S. Chien, B. W. Jeng, A two-grid finite element discretization scheme for semi-linear elliptic eigenvalue problems, SIAM J. Sci. Comput., 27, pp.1287-1304, 2006.
DOI: 10.1137/030602447
Google Scholar
[8]
J. H. Chen, F. Liu, A. H. Zhou, A two-scale higher-order finite element discretization for Schrodinger equation, J. Comput. Math., 27, pp.1951-1955, 2009.
Google Scholar
[9]
X.G. Gong, L.H. Shen, D. Zhang, A.H. Zhou, Finite element approximations for equations with applications to electronic structure computations, J. Comput. Math., 26, pp.310-323, 2008.
Google Scholar
[10]
J. Li, Investigations on two kinds of two-level stabilized finite element methods for the stationary Navier-Stokes equations, Appl. Math. Comput., 182, pp.1470-1481, 2006.
DOI: 10.1016/j.amc.2006.05.034
Google Scholar
[11]
K. Kolman, A two-level method for nonsymmetric eigenvalue problems, Acta Math. Appl. Sin-E., 21(1), pp.1-12, 2005.
Google Scholar
[12]
Y. N. He, J. C. Xu, A. H. Zhou, Local and parallel finite element algorithms for the Stokes problem, Numer. Math., 109, pp.415-434, 2008.
DOI: 10.1007/s00211-008-0141-2
Google Scholar
[13]
Y. Yang, H. Bi, A two-grid discretization scheme based on shifted-inverse power method, SIAM J. Numer. Anal., 49 , pp.1602-1624, 2011.
DOI: 10.1137/100810241
Google Scholar
[14]
Q. Li, Y. D. Yang, A two-grid discretization scheme for the Steklov eigenvalue problem, J. Appl. Math. Comput.
Google Scholar
[15]
H. Bi, Y. D. Yang, A two-grid method of the non-conforming Crouzeix-Raviart element for the Steklov eigenvalue problem, Appl. Math Comp., 217, pp.9669-9678, 2011.
DOI: 10.1016/j.amc.2011.04.051
Google Scholar
[16]
J. H. Bramble, J. E. Osborn, Approximation of Steklov eigenvalues of non-selfadjoint second order elliptic operators, in: A.K. Aziz,(Ed.), Math. Foundations of the Finite Element Method with Applications to PDE, Academic, New York, pp.387-408, 1972.
DOI: 10.1016/b978-0-12-068650-6.50019-8
Google Scholar
[17]
Y. D. Yang, Q. Li, S. R. Li, Nonconforming finite element approximations of the Steklov eigenvalue problem, Appl. Numer. Math., 59, pp.2388-2401, 2009.
DOI: 10.1016/j.apnum.2009.04.005
Google Scholar