[1]
E. Blogay ,Y. Wang, Arbitrarily smooth orthogonal nonseparable wavelets in , SIAM J. Math. Anal. 30(1999)678-697.
DOI: 10.1137/s0036141097327732
Google Scholar
[2]
I. Daubechies, Ten lecture on wavelets, SIAM, Philadelphia, PA, 1992.
Google Scholar
[3]
W. He and M. J. Lai, Examples of bivariate nonseparable compactly supported orthonormal continous wavelets ,IEEE Trans.Image Processing. 9(2000) 949-953.
DOI: 10.1109/83.841541
Google Scholar
[4]
Y. Z. Li, On the construction of a class of bidimensional nonseparable compactly supported wavelets, Proc. Amer. Math. Soc.133(2005) 3505-3513.
DOI: 10.1090/s0002-9939-05-07911-6
Google Scholar
[5]
R. L. Long, High dimensional wavelet analysis,World book publishing corporation, Beijing, China, 1995.
Google Scholar
[6]
A. Karoui, A note on the construction of nonseparable wavelet bases and multiwavelet matrix filters of , where , Electron. Res. Announc. Amer. Math. Soc. 9(2003) 32-39.
DOI: 10.1090/s1079-6762-03-00109-4
Google Scholar
[7]
A. Karoui, A technique for the construction of compactly supported biorthogonal wavelets of ,, J. Math. Anal. Appl. 249 (2000) 367-392.
DOI: 10.1006/jmaa.2000.6867
Google Scholar
[8]
A. Karoui, A general construction of nonseparable multivariate orthonormal wavelet bases, Cent. Eur. J. Math. 6 (2008) 504-525.
DOI: 10.2478/s11533-008-0052-6
Google Scholar