Chatter Control in Turning Process with a Nonlinear Energy Sink

Article Preview

Abstract:

This paper presents the interest of an original absorber of vibration in order to reduce chatter vibration in turning process. The device is composed of a linear oscillator corresponding to a flexible cutting tool subject to chatter strongly coupled to a Nonlinear Energy Sink (NES), with purely cubic stiffness. The novelty of this work is the use of a nonlinear cutting law, more accurate for modeling the cutting process. The delayed equations of motion are analyzed using a combination of the method of multiple scales and harmonic balance. Different types of responses regimes are revealed such as periodic response and also Strongly Modulated Response (SMR). Analytic results are then compared with numerical simulations. Finally, the potential of the NES is demonstrated to control chatter in turning process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

89-98

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.A. Tobias and W. Fishwick: Theory of regenerative machine tool chatter. Eng. Vol. 205, (1958), p.199–203 238–239

Google Scholar

[2] B.P. Mann, T. Insperger, G. Stepan, and P.V. Bayly: Stability of up-milling and down-milling, part 2: experimental verification. Int. J. Mach. Tools Manuf. Vol. 43, (2003), p.35–40

DOI: 10.1016/s0890-6955(02)00160-8

Google Scholar

[3] E. Gourc, S. Seguy, and G. Dessein: Dynamical modeling of spindle with active magnetic bearing for milling process, Adv. Mat. Res. Vol. 423, (2012), p.200–209

DOI: 10.4028/www.scientific.net/amr.423.200

Google Scholar

[4] E. Gourc, S. Seguy, and L. Arnaud: Chatter milling modeling of active magnetic bearing spindle in high-speed domain. Int. J. Mach. Tools Manuf. Vol. 51, (2011), p.928–936

DOI: 10.1016/j.ijmachtools.2011.08.008

Google Scholar

[5] M. Mousseigne, Y. Landon, S. Seguy, G. Dessein and J.M. Redonnet: Predicting the dynamic behaviour of torus milling tools when climb milling using the stability lobes theory, Int. J. Mach. Tools Manuf. Vol. 65, (2013), p.47–57

DOI: 10.1016/j.ijmachtools.2012.10.001

Google Scholar

[6] A.H. Nayfeh and N.A. Nayfeh: Analysis of the cutting tool on a lathe. Nonlinear Dyn. Vol. 63, (2010), p.395–416

DOI: 10.1007/s11071-010-9811-6

Google Scholar

[7] S. Seguy, T. Insperger, L. Arnaud, G. Dessein, and G. Peigne: Suppression of period doubling chatter in high-speed milling by spindle speed variation. Mach. Sci. Technol. Vol. 15, (2011), p.153–171

DOI: 10.1080/10910344.2011.579796

Google Scholar

[8] N.D. Sims: Vibration absorbers for chatter suppression: a new analytical tuning methodology. J. Sound Vib. Vol. 301, (2007), p.592–607

DOI: 10.1016/j.jsv.2006.10.020

Google Scholar

[9] H. Moradi, F. Bakhtiari-Nejad, and M.R. Movahhedy: Tuneable vibration absorber design to suppress vibrations: an application in boring manufacturing process. J. Sound Vib. Vol. 318, (2008), p.93–108

DOI: 10.1016/j.jsv.2008.04.001

Google Scholar

[10] A. Harms, B. Denkena, and N. Lhermet: Tool adaptator for active vibration control in turning operations. In 9th International Conference on New Actuators, Brême, Germany, (2004)

Google Scholar

[11] M. Wang: Feasibility study of nonlinear tuned mass damper for machining chatter suppression. J. Sound Vib. Vol. 330, (2011), p.1917–(1930)

DOI: 10.1016/j.jsv.2010.10.043

Google Scholar

[12] E. Gourc, S. Seguy, G. Michon. A. Berlioz: Delayed dynamical system strongly coupled to a nonlinear energy sink: application to machining chatter. In International Conference on Structural Nonlinear Dynamics and Diagnostics, Marrakech, Morocco, (2012)

DOI: 10.1051/matecconf/20120105002

Google Scholar

[13] O.V. Gendelman, E. Gourdon, and C.H. Lamarque: Quasiperiodic energy pumping in coupled oscillators under periodic forcing. J. Sound Vib. Vol. 294, (2006), p.651–662

DOI: 10.1016/j.jsv.2005.11.031

Google Scholar

[14] A.F. Vakakis and R.H. Rand: Non-linear dynamics of a system of coupled oscillators with essential stiffness non-linearities. Int. J. Non-linear Mech. Vol. 39, (2004), p.1079–1091

DOI: 10.1016/s0020-7462(03)00098-2

Google Scholar

[15] A.T. Savadkoohi, C.H. Lamarque, Z. Dimitrijevic: Vibratory energy exchange between a linear and a nonsmooth system in the presence of the gravity. Nonlinear Dyn. Vol. 70, (2012), p.1473–1483

DOI: 10.1007/s11071-012-0548-2

Google Scholar

[16] O.V. Gendelman: Bifurcations of nonlinear normal modes of linear oscillator with strongly nonlinear damped attachment. Nonlinear Dyn. Vol. 37, (2004), p.115–128

DOI: 10.1023/b:nody.0000042911.49430.25

Google Scholar

[17] A. Nankali, H. Surampalli, Y.S. Lee, and T. Kalmar-Nagy: Suppression of machine tool chatter using non- linear energy sink. Proceedings of ASME-IDETC, Washington DC, USA, (2011)

DOI: 10.1115/detc2011-48502

Google Scholar

[18] Y. Starosvetsky and O.V. Gendelman: Strongly modulated response in forced 2dof oscillatory system with essential mass and potential asymmetry. Physica D. Vol. 237, (2009), p.1719–1733

DOI: 10.1016/j.physd.2008.01.019

Google Scholar

[19] H. Shi, S. Tobias: Theory of finite amplitude machine tool instability, Int. J. Mach. Tools Manuf. Vol. 24, (1984), p.45–69

Google Scholar

[20] A. Luongo, D. Zulli: Dynamic analysis of externally excited NES-controlled systems via a mixed Multiple Scale/Harmonic Balance algorithm, Nonlinear Dyn. Vol. 70, (2012), p.2049–(2061)

DOI: 10.1007/s11071-012-0597-6

Google Scholar

[21] F.M. Als and A.G. Ulsoy: Analysis of a system of linear delay differential equations, ASME J. Dyn. Syst., Meas., Control Vol. 125, (2003), p.215–223

DOI: 10.1115/1.2428282

Google Scholar