[1]
S.A. Tobias and W. Fishwick: Theory of regenerative machine tool chatter. Eng. Vol. 205, (1958), p.199–203 238–239
Google Scholar
[2]
B.P. Mann, T. Insperger, G. Stepan, and P.V. Bayly: Stability of up-milling and down-milling, part 2: experimental verification. Int. J. Mach. Tools Manuf. Vol. 43, (2003), p.35–40
DOI: 10.1016/s0890-6955(02)00160-8
Google Scholar
[3]
E. Gourc, S. Seguy, and G. Dessein: Dynamical modeling of spindle with active magnetic bearing for milling process, Adv. Mat. Res. Vol. 423, (2012), p.200–209
DOI: 10.4028/www.scientific.net/amr.423.200
Google Scholar
[4]
E. Gourc, S. Seguy, and L. Arnaud: Chatter milling modeling of active magnetic bearing spindle in high-speed domain. Int. J. Mach. Tools Manuf. Vol. 51, (2011), p.928–936
DOI: 10.1016/j.ijmachtools.2011.08.008
Google Scholar
[5]
M. Mousseigne, Y. Landon, S. Seguy, G. Dessein and J.M. Redonnet: Predicting the dynamic behaviour of torus milling tools when climb milling using the stability lobes theory, Int. J. Mach. Tools Manuf. Vol. 65, (2013), p.47–57
DOI: 10.1016/j.ijmachtools.2012.10.001
Google Scholar
[6]
A.H. Nayfeh and N.A. Nayfeh: Analysis of the cutting tool on a lathe. Nonlinear Dyn. Vol. 63, (2010), p.395–416
DOI: 10.1007/s11071-010-9811-6
Google Scholar
[7]
S. Seguy, T. Insperger, L. Arnaud, G. Dessein, and G. Peigne: Suppression of period doubling chatter in high-speed milling by spindle speed variation. Mach. Sci. Technol. Vol. 15, (2011), p.153–171
DOI: 10.1080/10910344.2011.579796
Google Scholar
[8]
N.D. Sims: Vibration absorbers for chatter suppression: a new analytical tuning methodology. J. Sound Vib. Vol. 301, (2007), p.592–607
DOI: 10.1016/j.jsv.2006.10.020
Google Scholar
[9]
H. Moradi, F. Bakhtiari-Nejad, and M.R. Movahhedy: Tuneable vibration absorber design to suppress vibrations: an application in boring manufacturing process. J. Sound Vib. Vol. 318, (2008), p.93–108
DOI: 10.1016/j.jsv.2008.04.001
Google Scholar
[10]
A. Harms, B. Denkena, and N. Lhermet: Tool adaptator for active vibration control in turning operations. In 9th International Conference on New Actuators, Brême, Germany, (2004)
Google Scholar
[11]
M. Wang: Feasibility study of nonlinear tuned mass damper for machining chatter suppression. J. Sound Vib. Vol. 330, (2011), p.1917–(1930)
DOI: 10.1016/j.jsv.2010.10.043
Google Scholar
[12]
E. Gourc, S. Seguy, G. Michon. A. Berlioz: Delayed dynamical system strongly coupled to a nonlinear energy sink: application to machining chatter. In International Conference on Structural Nonlinear Dynamics and Diagnostics, Marrakech, Morocco, (2012)
DOI: 10.1051/matecconf/20120105002
Google Scholar
[13]
O.V. Gendelman, E. Gourdon, and C.H. Lamarque: Quasiperiodic energy pumping in coupled oscillators under periodic forcing. J. Sound Vib. Vol. 294, (2006), p.651–662
DOI: 10.1016/j.jsv.2005.11.031
Google Scholar
[14]
A.F. Vakakis and R.H. Rand: Non-linear dynamics of a system of coupled oscillators with essential stiffness non-linearities. Int. J. Non-linear Mech. Vol. 39, (2004), p.1079–1091
DOI: 10.1016/s0020-7462(03)00098-2
Google Scholar
[15]
A.T. Savadkoohi, C.H. Lamarque, Z. Dimitrijevic: Vibratory energy exchange between a linear and a nonsmooth system in the presence of the gravity. Nonlinear Dyn. Vol. 70, (2012), p.1473–1483
DOI: 10.1007/s11071-012-0548-2
Google Scholar
[16]
O.V. Gendelman: Bifurcations of nonlinear normal modes of linear oscillator with strongly nonlinear damped attachment. Nonlinear Dyn. Vol. 37, (2004), p.115–128
DOI: 10.1023/b:nody.0000042911.49430.25
Google Scholar
[17]
A. Nankali, H. Surampalli, Y.S. Lee, and T. Kalmar-Nagy: Suppression of machine tool chatter using non- linear energy sink. Proceedings of ASME-IDETC, Washington DC, USA, (2011)
DOI: 10.1115/detc2011-48502
Google Scholar
[18]
Y. Starosvetsky and O.V. Gendelman: Strongly modulated response in forced 2dof oscillatory system with essential mass and potential asymmetry. Physica D. Vol. 237, (2009), p.1719–1733
DOI: 10.1016/j.physd.2008.01.019
Google Scholar
[19]
H. Shi, S. Tobias: Theory of finite amplitude machine tool instability, Int. J. Mach. Tools Manuf. Vol. 24, (1984), p.45–69
Google Scholar
[20]
A. Luongo, D. Zulli: Dynamic analysis of externally excited NES-controlled systems via a mixed Multiple Scale/Harmonic Balance algorithm, Nonlinear Dyn. Vol. 70, (2012), p.2049–(2061)
DOI: 10.1007/s11071-012-0597-6
Google Scholar
[21]
F.M. Als and A.G. Ulsoy: Analysis of a system of linear delay differential equations, ASME J. Dyn. Syst., Meas., Control Vol. 125, (2003), p.215–223
DOI: 10.1115/1.2428282
Google Scholar