The Influence of Singlet Oxygen and Ozone on the Combustion in Methane-Air Mixture

Article Preview

Abstract:

Based on GRI3.0, we study the main chemical kinetics process about reactions of singlet oxygen O2(a1Δg) and ozone O3 with methane-air combustion products, inherit and further develop research in chemical kinetics process with enhancement effects on methane-air mixed combustion by these two molecules. In addition, influence of these two molecules on ignition delay time and flame speed of laminar mixture are considered in our numerical simulation research. This study validates the calculation of this model which cotains these two active molecules by using experimental data of ignition delay time and the speed of laminar flame propagation. In CH4-air mixing laminar combustion under fuel-lean condition(ф=0.5), flame speed will be increased, and singlet oxygen with 10% of mole fraction increases it by 80.34%, while ozone with 10% mole fraction increase it by 127.96%. It mainly because active atoms and groups(O, H, OH, CH3, CH2O, CH3O, etc) will be increased a lot after adding active molecules in the initial stage, and chain reaction be reacted greatly, inducing shortening of reaction time and accelerating of flame speed. Under fuel rich(ф=1.5), accelerating of flame speed will be weakened slightly, singlet oxygen with 10% in molecular oxygen increase it by 48.93%, while ozone with 10% increase it by 70.25%.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

111-118

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.M. Starik, N.S. Titova. Kinetics of detonation initiation in the supersonic flow of the H2+O2 (air) mixture in O2 molecule excitation by resonance laser[J]. Kinetics and Catalysis. 2003, 44 (1):28-39.

DOI: 10.1134/s0023158406030025

Google Scholar

[2] A. Starik, N. Titova, L. Bezgin, et al. Control of Combustion by Generation of Singlet Oxygen Molecules in Electrical Discharge [J]. J. Phys. 2006, 56: 1357-1363.

DOI: 10.1007/s10582-006-0374-1

Google Scholar

[3] V. Kozlov, A. Starik, N. Titova. Combustion Enhancement of Combustion of A Hydrogen-Air Mixture by Excitation of O2 Molecules to the a1Δg state [J]. Expl. Shock Waves, 2008, 44 (4): 371-379.

DOI: 10.1007/s10573-008-0062-5

Google Scholar

[4] V. Smirnov, O. Stelmakh, V. Fabelinsky, et al. On the Influence of Electronically Excited Oxygen Molecules on Combustion of Hydrogen-Oxygen Mixture [J]. J. Phys. D: Appl. Phys. 2008, 41(19): 192001.

DOI: 10.1088/0022-3727/41/19/192001

Google Scholar

[5] T. Nomaguchi, S. Koda. Spark Ignition of Methane and Methanol in Ozonized Air. Twenty Second Symposium (International) on Combustion, The Combustion Institute, Pittsburgh PA, 1988: 1677-1682.

DOI: 10.1016/s0082-0784(89)80180-8

Google Scholar

[6] M. Gluckstein, R.Morrison, T. Khammash. Combustion with Ozone-Modification of Flame Speeds C2 Hydrocarbon-Air Mixtures[R]. University of Michigan, Reports Control No.OSR-TN-227, 1 August 1955.

Google Scholar

[7] T. Ombrello, S. H. Won, Y. G. Ju, et al. Lifted Flame Speed Enhancement by Plasma Excitation of Oxygen[R] AIAA 2009-689.

DOI: 10.2514/6.2009-689

Google Scholar

[8] T. Ombrello, W. Sun, S. H. Won, et al. Mechanisms of Kinetic Combustion Enhancement by O2a1Δg [R]. AIAA 2010-1586.

Google Scholar

[9] T. Ombrello, S. H. Won, Y. G. Ju,et al. Flame propagation enhancement by plasma excitation of oxygen. Part II: Effects of O2 (a1Δg) [J]. Combustion and Flame, 2010, 157(10):1916-1928.

DOI: 10.1016/j.combustflame.2010.02.004

Google Scholar

[10] T. Ombrello, S. H. Won, Y. G. Ju,et al. Flame propagation enhancement by plasma excitation of oxygen. Part I: Effects of O3 [J]. Combustion and Flame,2010,157(10):1906-1915.

DOI: 10.1016/j.combustflame.2010.02.005

Google Scholar

[11] A.M. Starik, V.E. Kozlov, N.S. Titova. On the influence of singlet oxygen molecules on the speed of flame propagation in methane-air mixture [J]. Combustion and Flame, 2010, 157(2):313-327.

DOI: 10.1016/j.combustflame.2009.11.008

Google Scholar

[12] Z H Wang, L Yang, B Li, et al. Investigation of Combustion Enhancement by Ozone Additive in CH4/Air Flames Using Direct Laminar Burning Velocity Measurements and Kinetic Simulations [J]. Combustion and Flame, 2012, 159(1): 120-129.

DOI: 10.1016/j.combustflame.2011.06.017

Google Scholar

[13] http://www.me.berkley.edu/gri_mech/

Google Scholar

[14] A. Y. Starikovskii. Plasma Supported Combustion [J]. Proceedings of the Combustion Institute, 2005, 30: 2405-2417.

DOI: 10.1016/j.proci.2004.08.272

Google Scholar

[15] A.M. Starik, B.I. Lukhovitskii, N.S. Titova Mechanism of initiation of combustion in the CH4(C2H2)/Air/O3mixtures by laser excitation of the O3 molecules[J]. Kinetics and Catalysis, 2007,48 (3):348-366.

DOI: 10.1134/s0023158407030032

Google Scholar

[16] I. Glaschick-Schimpf, W.Hans, U. Schurath .Bunsentagung. Bielefeld, Germany. 1983:84.

Google Scholar

[17] A.M. Starik, N.S. Titova. Initiation of Combustion of a Methane–Air Mixture in a Supersonic Flow Behind a Shock Wave during Laser Excitation of O2 Molecules [J]. Technical Physics, 2004,49 (9) :1116–1125.

DOI: 10.1134/1.1800231

Google Scholar

[18] A.M. Starik, V.E. Kozlov, N.S. Titova. On the influence of singlet oxygen molecules on the speed of flame propagation in methane-air mixture [J]. Combustion and Flame, 2010, 157(2):313-327.

DOI: 10.1016/j.combustflame.2009.11.008

Google Scholar

[19] N.G. Dautov, A.M. Starik. On the problem of choosing a kinetic Scheme for the Homogeneous Reaction of Methane with Air [J]. Kinetics and Catalysis, 1997, 38 (2):28-39.

Google Scholar

[20] Manual of chemkin

Google Scholar

[21] M. Frenklach, D.E. Bornside. Shock-initiated ignition in methane-propane mixtures[J]. Combustion and Flame, 1984, 56(1):1-27.

DOI: 10.1016/0010-2180(84)90002-6

Google Scholar

[22] A. Burcat, K.Scheller, A. Lifshiitz. Shock-tube investigation of comparative ignition delay times for C1-C5 alkanes [J]. Combustion and Flame, 1971, 16(1):29-33.

DOI: 10.1016/s0010-2180(71)80007-x

Google Scholar

[23] A. Lifshiitz, K. Scheller, A. Burcat, et al. Shock-Tube Investigation of Ignition in Methane-Oxygen-Argon Mixtures [J]. Combustion and Flame, 1971, 16(3):311-321.

DOI: 10.1016/s0010-2180(71)80102-5

Google Scholar

[24] C.M. Vagelopoulos, F.N. Egolfopoulos. Direct experimental determination of laminar flame speeds [J]. Proceedings of the Combustion Institute, 1998, 27: 513-519.

DOI: 10.1016/s0082-0784(98)80441-4

Google Scholar

[25] G.J. Gibbs, H.F. Calcote. Effect of molecular structure on Burning Velocity [J].Journal of Chemical and Engineering Data,1959,4(3):226-237.

DOI: 10.1021/je60003a011

Google Scholar

[26] Maaren A. Van, D.S. Thung, L.R.H. De Goey. Measurement of Flame Temperature and Adiabatic Burning Velocity of Methane/Air Mixtures [J]. Combustion and Flame,1994,96 (4):327-344.

DOI: 10.1080/00102209408935360

Google Scholar

[27] H. Eberius, T. Kick, Ber. Bunsenges. Stabilization of Premixed, Conical Methane Flames at High Pressure [J]. Phys.Chem,1992,96(10):1416- 1419.

DOI: 10.1002/bbpc.19920961013

Google Scholar

[28] J.H. Bechtel, R. Blint, C.J. Dasch, et al. Atmosphere Pressure Premixed Hydrocarbon-Air Flames:Theory and Experiment [J]. Combustion and Flame, 1981, 42(2):197-213.

DOI: 10.1016/0010-2180(81)90158-9

Google Scholar