Reduction-Roast Leaching of Low-Grade Pyrolusite Using Bagasse as a Reducing Agent

Article Preview

Abstract:

Bagasse, a fibrous residue from sugarcane juice extraction, was used as a reducing agent to roast low-grade pyrolusite in N2. The roasted ore was further leached using sulfuric acid, to convert manganese oxide in the ore to manganese sulfate. The effects of weight ratio of bagasse to manganese ore, roasting temperature, roasting time, leaching temperature, leaching time, stirring speed and sulfuric acid concentration on the leaching recovery of manganese were investigated. Optimal conditions were determined to be a bagasse to manganese ore weight ratio of 0.8:10, roasting temperature of 500°C for 40 min, leaching stirring speed of 100 rpm, sulfuric acid concentration of 3 mol•L-1 and leaching temperature of 50°C for 40 min. The leaching recovery rate of manganese was up to 97.8% at the optimal conditions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

28-33

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Dj.M. Maric, P.F. Meier and S.K. Estreicher: Mater. Sci. Forum Vol. 83-87 (1992), p.1191 W. Zhang, C. Y. Cheng: Hydrometallurgy, 89 (2007) , p.137

Google Scholar

[2] T. Q. Li: China's manganese industry, 56 (2008) , p.4 (in Chinese)

Google Scholar

[3] S. C. Das, P. K. Sahoo, P. K. Rao: Hydrometallurgy, 8 (1982), p.35

Google Scholar

[4] C. Abbruzzese: Hydrometallurgy, 25 (1990) , p.85

Google Scholar

[5] D. Hariprasad, B. Dash, M. K. Ghosh, S. Anand : Minerals Engineering, 20 (2007) , p.1293

Google Scholar

[6] C. Acharya, R. N. Kar: Minerals Engineering, 16(2003), p.1027

Google Scholar

[7] T. Jiang, Y. B. Yang, Z. C. Huang, G. Z. Qiu: Hydrometallurgy, 69 (2003), p.177

Google Scholar

[8] A. A. Ismail, E. A. Ali, I. A. Ibrahim, M. S. Ahmed: Can. J. Chem. Eng., 82 (2004), p.1296

Google Scholar

[9] M. Trifoni, F. Veglió, G. Taglieri, L. Toro: Miner. Eng., 13 (2000), p.217

Google Scholar

[10] M. Trifoni, L. Toro, F. Veglió: Hydrometallurgy, 59 (2001), p.1

Google Scholar

[11] F. Pagnanelli, M. Garavini, F. Vegliò, L. Toro: Hydrometallurgy, 71 (2004), p.319

Google Scholar

[12] F. Pagnanelli, M. Garavini, F. Vegliò, L. Toro: Hydrometallurgy, 75 (2004), p.157

Google Scholar

[13] G. Furlani, F. Pagnanelli, L. Toro: Hydrometallurgy, 81 (2006), p.234

Google Scholar

[14] H. F. Su, H. K Liu, F. Wang, X. Y. Lü, Y. X. Wen: Chin. J. Chem. Eng., 18 (2010), p.730

Google Scholar

[15] H. F. Su, Y. X. Wen, F. Wang, X. H. Li, Z. F. Tong: Miner. Eng., 22 (2009), p.207

Google Scholar

[16] T. A. Lasheen, M. N. El Hazek, A. S. Helal: Int. J. Miner. Process, 92 (2009), p.109

Google Scholar

[17] X. K. Tian, X. X. Wen, C. Yang, Y. J. Liang, Z. B. Pi: Hydrometallurgy, 100 (2010), p.157

Google Scholar

[18] Z. Cheng, G. C. Zhu, Y. N. Zhao: Hydrometallurgy, 96(2009), p.176

Google Scholar

[19] J. J. Song, G. C. Zhu, P. Zhang, Y. N. Zhuo: Acta Metall. Sin.(Engl. Lett.), 23(2010), p.223

Google Scholar

[20] V. S. Batra, S. Urbonaite, G. Svensson: Fuel, 87 (2008), p.2972

Google Scholar

[21] S. J. Ren: Wuhan Industry University Press, Wuhan, (1993)

Google Scholar

[22] F. W. Y. Momade, Zs. G. Momade: Hydrometallurgy, 54 (1999), p.25

Google Scholar

[23] S. B. Kanungo, S. K. Mishra: Trans. Indian institute of metals, 55(3) (2002), p.81

Google Scholar

[24] C. Fushimi, K. Araki, Y. Yamaguchi, A. Tsutsumi: Ind. Eng. Chem., 42 (2000), p.3929

Google Scholar