Nanoscale Permanent Rings in Two- or Three-Dimensional Structure Constructed by the Self-Assembly of Copper(II)-Macrocyclic Complexes and Tetracyanonickelate(II)

Article Preview

Abstract:

Self-assembly of polyazamacricyclic complexes of copper(II), [Cu(H2L1]4+, where L1 = 1,8-bis(2-aminoethyl)-1,3,6,8,13-hexaazacyclotetradecane, and [Cu(H2L2)]2+, where L2 = 1,8-bis(4-butylic acid)-1,3,6,8,13-hexaazacyclotetradecane, [Ni(CN)4]2- produces two-dimensional permanent ring structure (1) and three-dimensional network structure (2), respectively, in crystalline solid. The geometry around copper(II) ion is an z-elongated octahedron (1) and square pyramid (2). Inter molecular hydrogen bonding of 1 produces one-dimensional ring chain and 2 produces one-dimensional zig-zag shape coordination polymer. Hydrogen bonding of neighboring chains of 1 produces two-dimensional permanent ring structure with a nanoscale area and that of 2 produces three-dimensional network structure having one-dimensional channels with nanoscale cross-section in crystalline solid.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

40-45

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. J. Choi and M. P. Suh, J. Am. Chem. Soc. 120, 10622 (1998).

Google Scholar

[2] M. P. Suh, H. J. Choi, S. M. So and B. M. Kim, Inorg. Chem. 42, 676 (2003).

Google Scholar

[3] K. S. Min and M. P. Suh, Eur. J. Inorg. Chem. 449 (2001).

Google Scholar

[4] O. M. Yaghi, H. Li, C, Davis, D. Richardson and T. L. Groy, Acc. Chem. Res. 34, 319 (2001).

Google Scholar

[5] S. S. –Y. Chui, S. M. –F. Lo, J. P. H. Charmant, A. G. Orpen and I. D. Williams, Science, 283, 1148 (1999).

Google Scholar

[6] J. Lu, A. Mondal, B. Moulton, M. J. Zaorotko, Angew. Chem. Int. Ed., 40, 2113 (2001).

Google Scholar

[7] C. –H. Kwak, R. P. John, J. –E. Jee, H. J. Kim and J. Kim, Inorg. Chem. Comm. 9, 533 (2006).

Google Scholar

[8] E. Y. Lee and M. P. Suh, Angew. Chem. Int. Ed., 43, 2798 (2004).

Google Scholar

[9] N. L. Rosi, J. Eckert, M. Eddaudi, D. T. Vodak, J. Kim, M. O'Keeffe and O. M. Yaugi, Science, 95, 469 (2002)

Google Scholar

[10] O. M. Yaugi, M. O'Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaudi and J. Kim, Nature, 423, 705 (2003).

Google Scholar

[11] R. Kitaura, K. Seki, G. Akiyama and S. Kitagawa, Angew, Chem. Int. Ed. 42, 428 (2003).

Google Scholar

[12] M. P. Suh, J. W. Ko and H. J. Choi, J. Am. Chem. Soc. 10967 (2002).

Google Scholar

[13] K. S. Min and M. P. Suh, Chem. Eur. J. 7. 303 (2001).

Google Scholar

[14] K. S. Min and M. P. Suh, J. Am. Chem. Soc., 122, 6834 (2000).

Google Scholar

[15] J. S. Seo, D. –M. Whang, H. –Y. Lee, S. I. Jun, J. –H. Oh, Y. –J. Jeon and K. Kim, Nature, 404, 982 (2000)

Google Scholar

[16] M. Albrecht, M. Lutz, A. L. Spek, G. van Koten, Nature, 406, 970 (2000)

Google Scholar

[17] L. G. Beauvais, M. P. Shores and J. R. Long, J. Am. Chem. Soc, 122, 2763 (2000).

Google Scholar

[18] O. R. Evans and W. Lin, Chem. Mater., 13, 2705 (2001).

Google Scholar

[19] Clay, R. M. Clay, M. Micheloni, P. Paoketti, W. V. Steele, J. Am. Chem. Soc., 101, 4119 (1979).

Google Scholar

[20] A. Anchini, L. Fabbrizzi, P. Paoketti and W. V. Steele, J. Chem. Soc. Dalton Trans.,  577 (1978).

Google Scholar

[21] C. -T. Lin, D. B. Rorabacher, G. R. Caylay and D. W. Magerum, Inorg. Chem., 18, 919 (1978).

Google Scholar

[22] D. A. Magerum and D. W. Magerum, J. Am. Chem. Soc., 92, 2151 (1970).

Google Scholar

[23] A. M. Tait, F. V. Lovecchio and D. H. Busch, Inorg. Chem., 16, 2206 (1977).

Google Scholar

[24] L. Fabbrizzi, A. Poggi and P. Zanello, J. Chem. Soc. Dalton Trans. 2191 (1983).

Google Scholar

[25] Y. Cui, H. L. Ngo, P. S. White and W. Lin, Inorg. Chem. 42, 652 (2003)..

Google Scholar

[26] J. C. Noveron, M. S. Lah, R. E. Del Sesto, A. M. Arif, J. S. Miller and P. J. Stang, J. Am. Chem. Soc. 124, 6613 (2002).

Google Scholar

[27] Z. Qin, M. C. Jennings, and R. J. Puddephatt, Inorg. Chem, 40, 6220 ( 2001).

Google Scholar

[28] D. Cheng, M. A. Khan, and R. P. Houser, Inorg. Chem., 40, 6858 (2001).

Google Scholar

[29] J. C. MacDonald, P. C. Dorrestein, M. M. Pilly, M. M. Porte, J. L. Lundburg, R. W. Henning, A. J. Shultz and J. L. Manson, J. Am. Chem. Soc., 122, 11692 (2000).

Google Scholar

[30] S. –G. Kang, K. Ryu, S. –K. Jung, and J. Kim, Inorg. Chem. Acta, 293, 140 (1999).

Google Scholar

[31] G. –C. Ou, C. –Y. Su, J. –H. Yao, and T. –B. Lu, Inorg. Chem. Comm. 8. 421 (2005).

Google Scholar

[32] G. M. Sheldrick, SHELEXL-97, University of Goettingen, Goettingen, Germany, (1997).

Google Scholar

[33] J. E. Huheey, E. A. Keiter, and R. L. Keiter, Inorganic Chemistry, 4th Ed. Haper Collins College Publishers, (1993).

Google Scholar

[34] J. Dreyer, J. Chem. Phys. 122, 184306 (2005).

Google Scholar