Effect of Acceleration Voltage on Properties of Nitrogen-Doped TiO2 Thin Films

Article Preview

Abstract:

Titanium dioxide has been used for environmental applications. However, pure TiO2 has low photocatalytic efficiency outdoors because of its large energy band gap. Higher nitrogen-doping level would have lower band-gap energy and it would make it possible to improve the utilization ratio of solar energy. Heavily nitrogen-doped TiO2 could be obtained by using ion beam assisted deposition (IBAD) technique. Acceleration voltage is a very important parameter of IBAD technique and will affect the processes of depositing thin film. Under the given experiment condition, acceleration voltage had little effect on the structure and absorbance spectra of the obtained nitrogen-doped titanium oxide thin films, but had great effect on the deposition rate, composition and surface morphology of the thin films. When the accelerate voltage was 250V, the deposition rate was the highest (about 9.0 nm/min), the resulting TiO2-xNx films contained nitrogen levels up to x =0.45, the structures were mostly crystalline anatase and the amount of shift was observed about 500 nm. The optimum acceleration voltage is about 250V under the given condition.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

496-501

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Fujishima, K. Honda. Nature 1972, 238: 37-38

Google Scholar

[2] R. Asahi, T. Morikawa, T. Ohwaki, et al. Science 2001; 293: 269-271

Google Scholar

[3] S. Sakthivel, H. Kisch. Phys. Chem.2003; 4: 487-490

Google Scholar

[4] H. Irie, Y. Watanabe, K. Hashimoto. J. Phys. Chem. B 2003; 107: 5483-5486

Google Scholar

[5] C. Burda, Y. Lou, X. Chen, A.C.S. Samia, J. Stout, J.L. Gole. 2003; 3: 1049-1051

Google Scholar

[6] S. Yin, Q. Zhang, F. Saito, T. Sato. Chem. Lett. 2003; 32: 358-359

Google Scholar

[7] T. Lindgren, J.M. Mwabora, E. Avendano, et al. J. Phys. Chem. B. 2003, 107: 5709-5716

Google Scholar

[8] P. G. Wu, C. H. Ma, J. K. Shang. Appl. Phys. A. 2005; 81: 1411-1417

Google Scholar

[9] F. Fang, Q. Li, J. K. Shang. Surf. Coat. Technol. 2010, 205: 2919-2923

Google Scholar

[10] Q. Li, J. Xue, W. Liang, J. K. Shang. Philos. Mag. Lett. 2008; 88: 231-238

Google Scholar

[11] T. Ihara, M. Miyoshi, Y. Iriyama, et al. Appl. Catal. B 2003, 42: 403-409

Google Scholar

[12] T. Morikawa, R. Asahi, T. Ohwaki, et al. Jpn. J. Appl. Phys. 2001; 40: L561- L563

Google Scholar

[13] G.R. Torres, T. Lingdren, J. Lu, et al. J. Phys. Chem. B.2004; 108: 5995-6003

Google Scholar

[14] K. Hukari, R. Dannenberg, E.A. Stach. J. Mater. Res. 2002; 17: 550-555

Google Scholar

[15] Q. Li, W. Liang, J. K. Shang. Appl. Phys. Lett. 2007; 90: 0631091-06310913

Google Scholar

[16] H. E. Swanson, H. F. McMurdie, M. C. Morris, E. H. Evans. 1969; 25: 82

Google Scholar

[17] L. Miao, P. Jin, K. Kaneko, et al. Appl. Surf. Sci. 2003; 255: 212-213

Google Scholar

[18] J. Hunt, I. Soletta, L. Battezzati, et al. J. Alloys Compad. 1993;194: 311-317

Google Scholar