High Volume Fraction Aluminum /Alumina-Fused Silica Hybrid Particulate Metal Matrix Composite

Article Preview

Abstract:

High volume fraction Aluminum/alumina-fused silica hybrid metal matrix composites containing alumina with 0, 10, 30 and 50 wt% fused silica were produced by melt squeezing casting method. Microstructure of hybrid composite was investigated by optical microscope and scanning electron microscopy (SEM). The SEM images showed uniform distribution of fused silica particles in composite microstructure. Also compressive strength of the composites changed (310-110 MPa) with amount of fused silica.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-7

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Suresh, A. Mortensen, and A. Needleman, Fundamentals of Metal Matrix Composites, Butterworth – Heinemann (1993).

Google Scholar

[2] N. Chawla, and K.K. Chawla, Metal Matrix Composites, Springer (2006).

Google Scholar

[3] A. Mortensen and J. Llorca, Metal Matrix Composites Annual Review of Materials Research, Vol. 40 (2010), P.243.

Google Scholar

[4] G. Roudini, R. Tavangar, L. Weber and A. Mortensen, Influence of Reinforcement Contiguity on the Thermal Expansion of Alumina Particle Reinforrced Alumnium Composite, IJMR , Vol. 101 (2010), P.1113.

DOI: 10.3139/146.110388

Google Scholar

[5] S. Suresha, B. K. Sridhara, Wear Characteristics of Hybrid Aluminium Matrix reinforced with Graphite and Silicon Carbide Particulates, Composites Science and Technology, Vol. 70 (2010), P. 1652.

DOI: 10.1016/j.compscitech.2010.06.013

Google Scholar

[6] S. A. Alidokht, A. Abdollah-zadeh, S. Soleymani and H. Assadi, Microstructure and Tribological Perforrmance of an Aluminium Alloy Based Hybrid Composite Produced by Friction Stir Processing, Materials and Design, Vol.32 (2011), P. 2727.

DOI: 10.1016/j.matdes.2011.01.021

Google Scholar

[7] S. K. Jo, W. J. Lee, Y. H. Park and I. M. Park, Effect of SiC Particle Size on Wear Properties of Al2O3-SiO2/SiC/Mg Hybrid Metal Matrix Composites, Tribol Lett, Vol. 45 (2012), P .101.

DOI: 10.1007/s11249-011-9866-7

Google Scholar

[8] J. Hemanth, Abbrasive and Slurry Wear Behavior of Chilled Aluminum Alloy (A356) Reinforced with Fusesd Siloca (Sio2P) Metal Matrix Composites, Composites: Part B, Vol. 42 (2011), P.1825.

DOI: 10.1016/j.compositesb.2011.06.022

Google Scholar

[9] M. G. Mckimpson and T. E. Scott, Processing and Properties of Metal Matrix Composites Containing Discontinuous Reinforcement, Materials Science and Engineeriing , Vol. 107, (1989), P.93.

DOI: 10.1016/0921-5093(89)90378-x

Google Scholar

[10] M. G. Mckimpson and T. E. Scott, Processing and Properties of Metal Matrix Composites Containing Discontinuous Reinforcement, Materials Science and Engineeriing , Vol. 107, (1989), P.93

DOI: 10.1016/0921-5093(89)90378-x

Google Scholar

[11] M.Hoffman, S. Skirl, W. Pompe, and J. Rödel, Thermal residual strains and stresses in Al2O3/Al, composites with interpenetrating networks, Acta Materialia, Vol. 47, (1999), P.565.

DOI: 10.1016/s1359-6454(98)00367-x

Google Scholar

[12] J. GU, X. Zhang, and M. GU, Mechanical Properties and Damping Capacityy of (SiCp+ Al2O3.Sio2f/Mg Hybrids Metal Matrrix Composites, Journal of Alloys and Compounds, Vol. 383, (2004), P. 104.

DOI: 10.1016/j.jallcom.2004.04.106

Google Scholar

[13] T. S. Chandrasekhar, K. Prabhakar, H.K. Shivanand, S. K. Santhosh and B. E. Mallikarjuna, Characterization of Mechanical Properties of Al 2024 Hybrid Metal Matrix Composites, International Journal of Materials Physics, Vol. 3, (2012), P. 61.

Google Scholar

[14] C.H. Caceres and W. J. Poole, Hardness and Flow strength in Particulate Metal Matrix Composites. Materials Science and Engineering A, Vol. 332, (2002), P. 311.

DOI: 10.1016/s0921-5093(01)01744-0

Google Scholar

[15] P. K. Ghosh and S. Ray, Effect of porosity and Alumina Content on the Mechanical Properties of Compocast Aluminium Alloy-Alumina Particulate Composite. Journal of Materials Science, Vol. 21, (1986), P. 1667.

DOI: 10.1007/bf01114723

Google Scholar