[1]
S. Suresh, A. Mortensen, and A. Needleman, Fundamentals of Metal Matrix Composites, Butterworth – Heinemann (1993).
Google Scholar
[2]
N. Chawla, and K.K. Chawla, Metal Matrix Composites, Springer (2006).
Google Scholar
[3]
A. Mortensen and J. Llorca, Metal Matrix Composites Annual Review of Materials Research, Vol. 40 (2010), P.243.
Google Scholar
[4]
G. Roudini, R. Tavangar, L. Weber and A. Mortensen, Influence of Reinforcement Contiguity on the Thermal Expansion of Alumina Particle Reinforrced Alumnium Composite, IJMR , Vol. 101 (2010), P.1113.
DOI: 10.3139/146.110388
Google Scholar
[5]
S. Suresha, B. K. Sridhara, Wear Characteristics of Hybrid Aluminium Matrix reinforced with Graphite and Silicon Carbide Particulates, Composites Science and Technology, Vol. 70 (2010), P. 1652.
DOI: 10.1016/j.compscitech.2010.06.013
Google Scholar
[6]
S. A. Alidokht, A. Abdollah-zadeh, S. Soleymani and H. Assadi, Microstructure and Tribological Perforrmance of an Aluminium Alloy Based Hybrid Composite Produced by Friction Stir Processing, Materials and Design, Vol.32 (2011), P. 2727.
DOI: 10.1016/j.matdes.2011.01.021
Google Scholar
[7]
S. K. Jo, W. J. Lee, Y. H. Park and I. M. Park, Effect of SiC Particle Size on Wear Properties of Al2O3-SiO2/SiC/Mg Hybrid Metal Matrix Composites, Tribol Lett, Vol. 45 (2012), P .101.
DOI: 10.1007/s11249-011-9866-7
Google Scholar
[8]
J. Hemanth, Abbrasive and Slurry Wear Behavior of Chilled Aluminum Alloy (A356) Reinforced with Fusesd Siloca (Sio2P) Metal Matrix Composites, Composites: Part B, Vol. 42 (2011), P.1825.
DOI: 10.1016/j.compositesb.2011.06.022
Google Scholar
[9]
M. G. Mckimpson and T. E. Scott, Processing and Properties of Metal Matrix Composites Containing Discontinuous Reinforcement, Materials Science and Engineeriing , Vol. 107, (1989), P.93.
DOI: 10.1016/0921-5093(89)90378-x
Google Scholar
[10]
M. G. Mckimpson and T. E. Scott, Processing and Properties of Metal Matrix Composites Containing Discontinuous Reinforcement, Materials Science and Engineeriing , Vol. 107, (1989), P.93
DOI: 10.1016/0921-5093(89)90378-x
Google Scholar
[11]
M.Hoffman, S. Skirl, W. Pompe, and J. Rödel, Thermal residual strains and stresses in Al2O3/Al, composites with interpenetrating networks, Acta Materialia, Vol. 47, (1999), P.565.
DOI: 10.1016/s1359-6454(98)00367-x
Google Scholar
[12]
J. GU, X. Zhang, and M. GU, Mechanical Properties and Damping Capacityy of (SiCp+ Al2O3.Sio2f/Mg Hybrids Metal Matrrix Composites, Journal of Alloys and Compounds, Vol. 383, (2004), P. 104.
DOI: 10.1016/j.jallcom.2004.04.106
Google Scholar
[13]
T. S. Chandrasekhar, K. Prabhakar, H.K. Shivanand, S. K. Santhosh and B. E. Mallikarjuna, Characterization of Mechanical Properties of Al 2024 Hybrid Metal Matrix Composites, International Journal of Materials Physics, Vol. 3, (2012), P. 61.
Google Scholar
[14]
C.H. Caceres and W. J. Poole, Hardness and Flow strength in Particulate Metal Matrix Composites. Materials Science and Engineering A, Vol. 332, (2002), P. 311.
DOI: 10.1016/s0921-5093(01)01744-0
Google Scholar
[15]
P. K. Ghosh and S. Ray, Effect of porosity and Alumina Content on the Mechanical Properties of Compocast Aluminium Alloy-Alumina Particulate Composite. Journal of Materials Science, Vol. 21, (1986), P. 1667.
DOI: 10.1007/bf01114723
Google Scholar