Mechanical Properties of Rubber Toughened Polyester Filled Carbon Black

Article Preview

Abstract:

This paper is focusing on mechanical properties of rubber toughened polyester filled carbon black (RPCB) for automotive parts and integrated circuits (IC) encapsulations applications. The samples were fabricated via hand lay-up and open molding technique in which 3 % of LNR was added as toughening agent in this composite and percentages of carbon black (CB) used vary from 0, 2, 4, 6, 8 and 10%. The mechanical properties were evaluated by impact and flexural testing. The result for each test was discussed to determine the most optimum loading of carbon black used to produce the composite. It was found that the addition of carbon black increased impact strength by 87%, flexural modulus by 33%, and flexural strength by 3%, at 4% of filler loading. The microstructures of the composites fracture surface were examined using a scanning electron microscope (SEM) to correlate and further explain the mechanical properties of the composites with morphology observation .

You might also be interested in these eBooks

Info:

Periodical:

Pages:

37-41

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Rassmann, R. Paskaramoorthy and R.G. Reid: Materials and Design Vol. 32 (2011), p.1399–1406.

Google Scholar

[2] D.M.A. Farias, M.Z. Farina, A.P.T. Pezzin and D.A.K. Silva: Materials Science and Engineering Vol. 29 (2008), p.510–513.

Google Scholar

[3] W.D. Bascom and D.L. Hunston: Rubber-Toughened Plastics, (1989), pp.135-172.

Google Scholar

[4] Y.P. Lee, H.S. Ahmad, R. Rasid, Y.E.N. Se, H.K. Yew and M.A. Tarawneh: Sains Malaysiana Vol. 40 (2010), p.679–683.

Google Scholar

[5] H. Ismail and A. Suryadiansyah: Journal of Reinforced Plastics & Composites Vol. 23(6) (2004), p.639–650.

Google Scholar

[6] H.Y. Li, H.Z. Chen, W.J. Xu, F. Yuan, J.R. Wang and M. Mang Wang: Physicochem. Eng. Aspects Vol. 254 (2005), p.173–178.

Google Scholar

[7] J.S. Tan, and N.A.F.N. Farid: Separation and Purification Technology Vol. 35 (2004), p.47–54.

Google Scholar

[8] J.M. Degrange, M. Thominea, Ph. Kapsa, J.M. Pelletier, L. Chazeau, G. Vigier, G. Dudragne and L. Guerbe: Wear Vol. 259 (2005), p.684–692.

DOI: 10.1016/j.wear.2005.02.110

Google Scholar

[9] A. Khalil, N.Z. Noriman, M.N. Ahmad, M.M. Ratnam and N.A.N. Fuaad: Journal of Reinforced Plastics and Composites Vol. 26(2007), pp.305-311.

Google Scholar

[10] N.S.M. El-Tayeb: Wear Vol. 265 (2007), pp.223-235.

Google Scholar

[11] M.L. Auad, P.M. Frontini, J. Borrajo and M.I. Aranguren: Polymer Vol. 42 (2000), pp.372-373.

Google Scholar

[12] A.H.P.S. Khalil, P. Firoozian, I.O. Bakare, M.H. Akil and M.A. Noor: Materials and Design Vol. 31 (2010), pp.3419-3425.

DOI: 10.1016/j.matdes.2010.01.044

Google Scholar

[13] N.N. Bonnia, S.H. Ahmad, I. Zainol, A.A. Mamun, M.D.H. Beg and A. K. Bledzki: eXPRESS Polymer Letters Vol. 4(2) (2010), p.55–61.

DOI: 10.3144/expresspolymlett.2010.10

Google Scholar

[14] R.V. Silva, D. Spinelli, F.W.W. Bose, N.S. Claro, G.O. Chierice and J.R. Tarpani: Compos. Sci. Techno. Vol. 66(10) (2006), pp.1328-35.

Google Scholar

[15] P. Firoozian, A.H.P.S. Khalil, M.H. Akil and M.A. Noor: Advanced Materials Research Vol.264-265 (2011), pp.513-517.

Google Scholar

[16] R. Thomas, Y. Ding, Y. He, L. Yang, P. Moldenaers, W. Yang, T. Czigany and S. Thomas: Polymer Vol 49 (2008), pp.278-294.

Google Scholar

[17] S.Y. Fu, X.Q. Feng, L. Bernd and Y.M. Mai: Composites Part B Vol. 39 (2008), p.933–961.

Google Scholar

[18] C. Yu and C. Wei: Advanced Materials Research Vol. 194-196 (2011), pp.1772-1775.

Google Scholar

[19] X. Wen, Y. Wang, J. Gong, J. Liu, N. Tian, Y. Wang, Z. Jiang, J. Qiu and T. Tang: Polymer Degradation and Stability Vol. 97 (2012), pp.793-801.

DOI: 10.1016/j.polymdegradstab.2012.01.031

Google Scholar

[20] M. Li and D. Liu: Advanced Materials Research Vol. 418-420 (2012), pp.1452-1455.

Google Scholar