Effect of Polycaprolactone Electrospun Fiber Size on L929 Cell Behavior

Article Preview

Abstract:

Poly (caprolactone) (PCL) was selected as the substance for producing the ultrafine fiber using the eletrospinning process. The effect of the solution concentration on fiber size was studied to determine the condition for preparing PCL fiber mats with desired size range. PCL fiber mats with three different fiber sizes, i.e. 440 nm, 960 nm and 4.6 μm, were prepare and used to evaluate effect of fiber size on cell adhesion and proliferation using L929 as a model cell. The results showed that while fiber size has no effect on initial cell attachment, the mat with medium and large fibers showed higher cell proliferation than the mat with small fiber. Fiber size also played role in prohibiting or accommodating cellular distribution or penetration into the under layer of electrospun fiber mat.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

420-424

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Anthony, J.M. David, P.V. Josept, and R. Langer. Synthetic biodegradable polymer scaffolds.

Google Scholar

[2] T.J. Sill, and H. A. Recum: Biomaterials Vol. 29 (2008), pp.1989-2006

Google Scholar

[3] S.A. Sell, M.J. Mc Clure, K. Garg, P.S. Wolfe, and G. L. Bowlin: Advanced Drug Delivery Reviews Vol. 61 (2009), p.1007–1019

DOI: 10.1016/j.addr.2009.07.012

Google Scholar

[4] T. Andric, A.C. Sampson, and J.W. Freeman: Mats. Sci. and Engineering C Vol. 31 (2011), p.2–8

Google Scholar

[5] S. Samavedi, C.O. Horton, S.A. Guelcher ,A.S. Goldstein, and A.R. Whittington: Acta Biomaterialia Vol. 7 (2011), p.4131–4138

DOI: 10.1016/j.actbio.2011.07.008

Google Scholar

[6] N. Annabi, A.Fathi, S.M. Mithieux, A.S. Weiss, and F.Dehghani: Supercritical Fluids Vol. 59 (2011), p.157– 167

DOI: 10.1016/j.supflu.2011.06.010

Google Scholar

[7] M.R. Williamsona, R. Blackb, and C. Kielty: Biomaterials Vol. 27 (2006), p.3608–3616

Google Scholar

[8] H. Nei, A. He, J. Zheng, S. Xu, J. Li, and CC. Hann: Biomacromolecules Vol. 9 (2008), pp.1362-1365

Google Scholar

[9] Wan, Y.-Q., He, J.-H., Wu, Y. and Yu, J.-Y: Materials Letters Vol. 60 (2006), p.3296–3300

Google Scholar

[10] Doshi and D.H. Reneker. Electrostatics Vol. 35 (1995), p.51–160

Google Scholar

[11] S. Soliman, S. Pagliari, A. Rinaldi, G. Foate, R. Fiaccavento, F. Pagiali, O. Franzes, M. Minieri, P. Di Nardo, S. Licoccia, and E. Traversa: Acta Biomaterialia. In Press.

DOI: 10.1016/j.actbio.2009.10.051

Google Scholar

[12] K.T. Shalumon, K.P. Chennazhi, H.Tamura, K. Kawahara, S.V. Nair, and R. Jayakumar: IET Nanobiotechnology Vol. 69 (2012), pp.16-25

Google Scholar