New Preparation for Amorphous/Nanocrystalline Ni-Mo Alloys by Electrodeposition

Article Preview

Abstract:

The amorphous/nanocrystalline Ni-Mo alloys are obtained in alkaline nickel carbonate solution in this paper. By using X-ray diffraction (XRD) and scanning electronic microscopy (SEM) to testify microstructure and morphology of the deposits. It is found that the deposits are composed of amorphous and nanocrystalline structure phases. Compared with the nickel sulfate solution, the amorphous/nanocrystalline alloys are more accessible to be obtained in carbonate solution under the same conditions as the sulfate solution. The internal stress between the deposit and the basement is inexistent with the tiny granules and well-proportioned grains at the coating surface. The stability of the alkaline nickel carbonate solution is much better than the sulfate solution, and the deposit performance is relatively better and easy to be controlled.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

191-196

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Alexis Damian, Sasha Omanovic. J. Power Sources, vol. 158 (2006), p.464

Google Scholar

[2] A.A. Stasov, S.Ya Pasechnik, Izv. Vyssh Ucheb Zaved, et al, Ser. Chem. And Chem. Technol., vol. 16(1973), p.600

Google Scholar

[3] G.L. Goswami, S.Kumar, R.Galun, et al. Lasers Eng. Vol.13 (2003), p.1

Google Scholar

[4] Lianhui Ding, Ying Zheng, Zisheng Zhang, et al. Applied Ctalysis A: General, vol.319(2007), p.25

Google Scholar

[5] P.Kedzierzawski, D.Oleszak, M..Janik-Czachor Mater. Sci. Eng. A: vol.300 (2001), p.105

Google Scholar

[6] J.J. Kim., Y.Choi., S. Surech., A.S. Argon., Science, vol. 295(2002), p.654

Google Scholar

[7] C.C.Hu, C.Y. Weng, J. Appl. Electrochem, vol. 30(2000), p.499

Google Scholar

[8] Karolus, E.lagiewka. J. Alloys and Compounds, vol. 367(2004), p.235

Google Scholar

[9] Shunsuke Yagi, Akira Kawakami, Kuniaki Murase, etal. J. Electrochimica Acta, vol. 52(2007) , p.6041

Google Scholar

[10] S.H. Zhou, Y.Wang, C.Jiang, et al.. Materials Science and Engineering A: vol. 397 (2005), p.288

Google Scholar

[11] G.J. Houben, F.Wagner., Applied Geochemistry, vol.22 (2007), p. (2029)

Google Scholar

[12] Bogdan C. Donose, Anh V. Nguyen, et al., Water Research, vol.41 (2007), p.3449

Google Scholar

[13] Bo Deng, Yimin Jiang, Jiaxing Liao, et al. Applied Surface Science vol. 253(2007), p.7369

Google Scholar

[14] Tetsuo Oishi, Kazuya Koyama, Hirokazu Konishi, et al. Electrochimica Acta, vol. 53(2007), p.127

Google Scholar

[15] Pamela Eberspächer, Erwin Wismeth, Richard Buchner, et al., Journal of Molecular Liquids, vol. 129(2006), p.3

Google Scholar

[16] Yue Zeng, Ming Ma, Xiaoming Xiao, et al., Chinese Journal of Chemistry, vol. 18(2000), p.29

Google Scholar

[17] Zhong-cheng Guo, Rui-dong Xu, Ji-kung Wang., Transactions of materials and heat treatment proceedings of the 14TH IFHTSE Congress, 25(2004), p.1130

Google Scholar

[18] Luciana S. Sanches, Sergio H. Domingues, Claudia E.B. Marino, et al. J. Electrochemistry Communications, vol. 6(2004), p.543

Google Scholar